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clei lighter than Au will increase, while for ener­
gies for which Ymax,..., Ycr• the fission cross 
section will actually coincide with the total reac­
tion cross section. Since the value of z will be 
greater than 0.3 for target nuclei lighter than Au, 
expression (8) will contain a large error, so we can 
only approximately give the region of ion energies 
for which the fission cross section will equal the 
total cross section. Thus, for example, for Yb 
and Dy, this region is around 150 Mev. The fis­
sion cross section, naturally, also increases with 
increasing mass of the bombarding particles. 

In conclusion I thank B. T. Geilikman and V. 
M. Strutinskii for discussion of this work and for 
valuable comments. 
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The probability of a quantum transition of a polaron from the 1s to the 2p state caused by 
thermal vibrations of the lattice is computed. The adiabatic form of perturbation theory is 
used in the calculations. At room and higher temperatures transition to the 2p state occurs 
during 10-8 -10-9 sec. 

1. INTRODUCTION 

P OLARONS are the principal carriers of current 
in ionic crystals.1 As is well known, in crystals 
which have large cohesive energies polarons are 
characterized by larged effective masses, and also 
by the existence of a fluctuation movement of the 
electron with respect to the center of gravity of 
the polaron. There exists a series of bound states, 
between which quantum transitions are possible. 
In this paper we shall consider such a transition 
between a 1s ground state and a 2p final state. 

During the transition, the momentum of the po-

laron is conserved and changes in its kinetic en­
ergy occur at the expense of changes in its effec­
tive mass. The process under consideration turns 
out to be a multiphonon process. Frenkel2 was the 
first to show that such transitions are possible in 
crystals. He pointed out that the equilibrium con­
figuration of the field oscillators changes during 
such a transition. A quantitative theory of non­
radiative transitions at F centers, based on this 
idea, was presented by a number of authors.3- 6 

Another mechanism for thermal transitions was 
suggested by Kubo.7 

In this paper the basic idea and method of the 
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theory of nonradiative transitions at F centers, 
proposed by Lax, 4 is used. 

In the present work by a thermal transition is 
meant a transition induced by thermal vibrations 
of the lattice, and described by the terms in the 
initial Hamiltonian for the quantitative description 
of the polaron as proposed by Bogoliubov and Ti­
ablikov. These terms are caused by departures 
from adiabaticity, and equal weight is given to all 
terms, which have the same order of smallness 
(E3 ). By formulating the problem in this way, we 
shall obtain information about the duration of the 
ground state ( 1s ) . 

Anticipating the results somewhat, it can be 
said, that in the case under consideration the most 
important part of the transition matrix element is 
that part which is related to the dependence of the 
electronic wave function on the oscillator coordi­
nates. This agrees with previously cited work.3- 6 

Finally it should be noted, that for a more con­
sistent treatment, in the theory of F centers 
there must arise a question about changes of fre­
quency of the field oscillators in the presence of 
an electron. This question is considered in Sec. 
2 of this paper. 

2. TRANSFORMATION OF THE HAMILTONIAN 
OF THE SYSTEM 

The Hamiltonian of the polaron problem has the 
form 

Here p and r are the momentum and coordinate 
of the electron; Pf and qf are analogous quanti­
ties for the field oscillators; E (f) = liwf with Wf 
~ w, the limiting frequency of optical vibrations, 

A!=- (elf) (4rrt;c.;cjV)'I,, 

where c = 1/n2 - 1/ E0, n2 and Eo are the square 
of the index of refraction and the dielectric con­
stant of the material respectively, and V is the 
volume of the crystal. 

According to Bogoliubov and Tiablikov, a-to to 
separate the translational invariance of Eq. (1) one 
must write 

r = A + q, q1 = (rt + sQt) e-itq ; ( 2) 

~ and q describe the fluctuational and transla­
tional motion of the electron, respectively. 

For nonspherically symmetrical states, the 
limitations on the new coordinates Qr should be 
written thus , • 

~ ~ f•v.~ (f) Qt =0, ~=I, 2, 3, (3) 
• f 

where 

~ ~ f•f~v~~ (f) r1 =Oay· (4) 
B f 

In terms of the new variables the Hamiltonian 
(1) takes the form 

where 
2 

H o = ;~ + ~ A,emrt + + ~ E (f) I rt !2 , 

f f 

H1 = ~ {Atei1" +- E (f) r -t} Qt; 
f 

(5) 

H2 = + ~ E (f) QtQ-t + + ~ E(f){P'--t- + v,~ (f) f~J"} 
f 

I i * 
X {Pr+ yv.~(f) f~J.}; 

Ha =-+ f E (f) {P' -t_iv.~ (f) f~J .} v~8 (f) {f 8ojoAy 

+ ~ k8fYQkP~ + T ~ f8k'~k"JpV:p (k) Qk}- (6) 
k k 

1"" • { 1 • - 2 .LiE (f) v"~ (f) f~ojol., + y 2} f~kakcrJpVcrp (k) Qk 
f k 

+ l}k"f~QkP~}{P~k-fv.8(f)f•J8}. 
k 

Here the following notation is used: 

P, = - ittofoA, P1 = - w;aQ1, J = - itta;a q .. 

P; = Pt- 2} v:~ (f) f• ~ k~rkPk. (7) 
a~ k 

The quantity J is the momentum of the whole sys­
tem, and is an integral of the motion. 

In the first approximation in E, we obtain for 
the electronic function the expression 

ron(/., • ·, Qf • · .) = <pn (1,) + s 2}' (Hllmn <pm {A), (8) 
' m W~-W~ 

where CfJn (A.) and W~ are non-self-consistent 
quantities of the zeroth approximation. The sym­
bols 1/!n. (A.) and Gn will be used to denote self­
consistent quantities. 

The energy of the electron Wn ( ... Qf ... ) de­
pends on Qf through perturbation theory correc­
tions of the first, second, and third order, i.e., 
through E, E2, and E3, it being obvious that the 
first-order correction E ( H1 )nn vanishes. This 
leads to the definition 

A! nn 
rt=- E(j)J1 , (9) 

where 
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The motion of the oscillators is described by 
the equation 

(s2if2+s3R3- (E~N- Gn)] <D~N = 0, (10) 

where 

H3 = (H3)nn +~' ~~ (Hl)nm (Hl)mp(Hl)pn 
P m (Gn- W~)(Gn- W~) 

(11) 

(12) 

The last terms in (11) and (12) we denote by 

~ B1gQ1Qg and ~ BlghQIQgQh. 

respectively. 
In determining the energy E~N of the whole 

system and the corresponding wave function, we 
shall neglect the term of order E3, considering it 
to be one of the causes of quantum transitions be­
tween the states that are obtained. In this way we 
obtain 

s2H2<DnN ( ... Q1 ... ) = (EnN--Gn)<DnN(· ·. Q1. · .), (13) 

where N is the set of quantum numbers of the os­
cillators. The first index in <Pn.N indicates that 
the motion of the oscillators occurs under the ac­
tion of average field of an electron in the state n. 

The unknown quantities, v a/3. are determined 
from the following relationship: 9•10 

~k~v~~ (k) = n2r"k~ j E (k) fl.~, (14) 

where J.L is the diagonalized effective mass ten­
sor of the polaron 

fl."= n2 l}k"2irki2/E(k). 

Taking (14) and (15) into account, we have 

H2 = 1/2 ~ J~ /fl.~+ 1/2 ~ E (f)(QIQ-1 
0: I 

+ p;p'_l) + ~ BlgQ,Qg, 
I, g 

H3 =in (ViJjiJ).)nn- ~ (Vf) v:~ (f)f~J~Q, 
I 

+in~ (fV) Q1P; + ~ BlghQIQgQh, 
I lgh 

where 

V" =Jro./1/x. 

(15) 

(16) 

(17) 

According to Tiablikov, 10 diagonalization of Eq. 
(16) is accomplished by a single orthogonal trans­
formation by the matrix 3f, v : 

(18) 

The matrix arv is determined from the condition 

(19) 

where 

B1g = V E (f) E (gj (Big+ Bg1); 

q 11 and A. v are the new coordinates and frequen­
cies of the field oscillators. Equation (19) has 
three eigenvalues A.a (a = 1, 2, 3) which are 
equal to zero; thus 

a1" = - inf~r~ IV E (f) fl."· (20) 

It should be noted that the coordinates qa corre­
sponding to A.a. are equal to zero. This means, 
that as a result of condition (3), three degrees of 
freedom of the field are transferred to the polaron 
and they are found in the translational motion of 
the latter. 

After diagonalization, H2 has the form 

(21) 

The primes on the summation sign signify that 
terms with v =a are to be left out of the sum. It 
should be noted that J.L a, A.v and q11 depend on 
the state of the electron and therefore shoula bear 
indices which correspond to the appropriate elec­
tronic state. We shall introquce the Bose opera­
tors t 11 and tt as follows: 

qv = ,/- (Cv + c:J=v). Pv =- i ]II 'A,- (Cv- Ct). 
y 2Av 2 

(22) 

Then 

H 2 = 1/2 '] J;ffL" + ]' Av (CtCv + 1/2) (23) 

.. ' 
The eigenfunctions and eigenvalues of Eq. (13) as­
sume the form: 

<DnNJ = V-'J,eiJqj1;_ IT <Dnnv (q.), (24) 
v"'~ 

(25) 

For the wave function of the complete system we 
have 

~nNJ = ~n (1., ... , qv, .. ) <DnNJ· (25') 
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3. PROBABILITY OF A NONRADIATIVE 
TRANSITION 

Quantum transitions will occur between the 
states given by Eq. (25'). These transitions come 
about because of the inaccuracy of the function 
(25') and omission of the terms E3H3 from the 
Hamiltonian. 

The probability Pnn' of a quantum transition 
per unit time between the initial state of the sys­
tern nN and its final state n' N' has the form: 

Pnn'= 2; AvN S~drJ(n'N'IH 
N' 

(26) 

Here dr is the number of states, in the energy in­
terval dEn'N' of the final states. Summation over 
N' is performed over all final oscillator states. 
AVN denotes an average over the initial quantum 
states of the oscillators, N. The matrix element 
in (26), to an accuracy of quantities of the order 
E3, has the form: 

(n', ... , n~ . . . i H- EnN In, ... , n •. .. ) 

(27) 

+ Nnn'lf3 } n' <Dnna fl' dqa, 
a a 

a A YE(f)JPn 
L n (') _ ~1'" fv f f (') 

v /, - '. "'p " • 
"'-! V2:~.n (G -Wo) ' 

p f v n P 

(28) 

where ?\.~ is the lattice vibration frequency, Nnn' 
= (1/Jn.', ljJn) is the non-orthogonality integral of the 
self-consistent functions. To evaluate the sum (26) 
over all final oscillator states we make use of the 
integral form of the Dirac <5-function. 

To simplify the calculation, let us change arv 
into <5fv and ?\.11 into liw. Let us also take it into 
account that in our case Nnn' = 0. Then after a 
series of simple transformations, we obtain: 

co 

Pnn'=- ~: ~dr ~ exp{(2rriv0 +iwa)u}duAvN(NIV-'12 

-co 

u 

n'n* + n'n* fl { i \ (R r · X ~ (mt C.t - nLt Ct) expr-J 1t VV l r'-re-'"' 8 

f r 0 

+ R-r~fei"'•)sds} X v-'f, ~ (m~~~;teiwu 
g 

(29) 

- m;'n~~e-iwu) IN), 

where 

n'n I v-v 1 A f G 0 -1 n'n mt = Vz tE ( ) ( n- W p)avlt ; 

R I V-V E (f) n n' 
f = v:t (r -1 - r -!) ' 

hwa = 1h ~ E (f) I ri- rf' i2 , 

(30) 

f 

A quantity with the index "av" is a certain 
average value of the denominator in Eq. (28). The 
sign [-] indicates a reordering of the operators 
in the product, so that they are arranged, reckon­
ing from right to left, in order of decreasing value 
of the index s.4•11 In computing the average over 
the initial states N, the only terms retained in 
Eq. (29) are those which remain finite as V- oo. 

Let us introduce the symbols 

s = 112 ~ AJ I J't- J!'n' 12 I £2(f); (31) 
f 

z2 = [(Gn _ W~);~12 S AJ£2 (f) J'f'nJ':']'; (32) 
f 

Y =(On- W~ l;; L; A}J~'f (Jf'n'- J'fn). (33) 
f 

The index n corresponds to the self-consistent 
state ls, n' to the self-consistent state 2p. 

In terms of. these new symbols one is led to the 
following result of averaging: 

r 27te6 \ -
Pnn' = \'ii2(;)rxp [- S (2n + 1) + il?] x 

X {z; v n (n + 1) (/1_I(z) +l1+I(z))+ I ~~2 n ({t + 1) X 

x (/1+2 (z) + /1-2 (z)) + 1 Y 12 [(n + 1l2)2 + 1l2n (n + 1)] /1 (z) 

- (n + 1l2l V n (n + 1) 1Y !2 (/1-1 (z) + ht1 (z)), (34) 

where 

n = [exp (nwlkT)- 1Pl = 2rrv0jw, (35) 

i 1 n+1 V 'f' = 2 n-=-, z = 2s n (n + 1); 
n 

It ( z) is Bessel's function with an imaginary argu­
ment. The probability depends on the momentum 
of the polaron through the quantity !. 

Polarons obey the Maxwellian velocity distri­
bution law; therefore the probability, averaged 
over the initial kinetic energy of the polaron, can 
be calculated from the equation: 

Pnn' = (2rr{LnkT)-'Iz ~ P nn' exp (- J212tLnkT) dJ. (36) 

It can be evaluated approximately at low and high 
temperatures. 

It should be noted that for the transition con­
sidered here Y = 0, and therefore Eq. (34) is 
simplified. Furthermore, it turns out that in the 
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state 2p differences among components in the ef­
fective mass tensor of the polaron are not large. 
To simplify the calculation of the integral (36), we 
introduce an average effective mass of the polaron 
in the excited state, representing it by the symbol 
j.l.n'. 

At low temperatures, It-t ( z) turns out to be 
the larger of the two Bessel functions in Eq. (34). 
A simple calculation leads to the following expres­
sion: 

where 

- ( ~G\ 
Pnn' = wK exp ·-liT) 

1/J (y) is the logarithmic derivative for r. 

For the high temperature region, but at the 
same time with the restrictive condition: 

1 ~kTjt.w<S. 

(38) 

one can obtain an approximate expression for (36), 
by the method of steepest descent. 12 Let us take 
account of the fact that in this temperature range 
one can write 

n=kTjt.w, z=2S(n+ 1/ 2). 

We then obtain 

x exp[-2~~ (1 + 2i)] (371
) 

COS -- cr 2 ---- cr X h ( y'liw J -'1 ( 1 15 kT 1 ( !Ln- !Ln' ) 2 
_ 2 ) 

2SkT , 4 'liw S !Ln + !Ln' ' 

where 

cr = 1 + (y/S) (fLn- fLn') / (fLn + fLn')· 

4. CALCULATION OF THE PARAMETERS OF 
THE THEORY AND EVALUATION OF THE 
TR,ANSITION PROBABILITIES 

For the ground state of the polaron, following 
Ref. 1, we have 

a;'!. 
~Is= ,)- (1 + IXrf) e-a,r, IX1 = me2 Cj2n2 , 

r 7n: 

0 18 =- 0.0535 me4c2jn2 , 

!Lrs = 5,8 .IQ-3 (me2cjt;,2)3 e2cjw2. 

(39) 

For the 2p state of the polaron, consistent with 
ls, we have 

cp2p = (41)-'12 (2x)'l2 (2~)'12 (2xr) e-2~ary10 (0), 

where 

IX= 0.6585me2cjn2 , 2~ = 0,5146. wgp =0,0153me4c2jli.2.(40) 

In the self-consistent 2p state, we have 

a;'l2 
~2P = ,~- e-a,rl2 (21X2f) y lO (6), 

2 r 6 

01:2 = 0.3914me2cjt.2 , G2p =- 0.0191me4c2jt.2 • (41) 

For the effective mass of the polaron in the ex­
cited states we can write: 

fL~p = fL~p=6.30. 2-10(e2cjw2)01::; 

(42) 

In view of the above, the average effective mass of 
the polaron in this state is equal to: 

(42') 

The ratio of the polaron effective masses in the 
two states is the same in all crystals,and is equal 
to: 

fLrs/fL2p = 16.51. (43) 

Calculations of Eqs. (31), (32), and (33) yield 
the following expressions: 

( 7 185 ) 
X 1 + 1 + "~' + 14 (1 + '1')2 • 

where T = a2/2a1. 
From Eqs. (44) and (45) we obtain 

S = 0.0508 me4c2 j t;,3w, 

Z 2 = 0.0156 (t.w)3e2c01:1 [(G1s- wp;;p. 

(44) 

(45) 

(44') 

(4.5') 

To calculate the average indicated here, one 
can make use of Kessler's method.13 This aver­
age value is of the order 

(Grs- W2pt1 • 

if the energy of the states 2s, 2p, and 3s, con­
sistent with 1s, are approximately equal to each 
other. Then one can write 

Z2 = 0.0567 (t.w)2jy. (45") 
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For Eq. (37) we obtain 

Pnn' = 1.917 ·10-Sw -. /7iT (! _ 1.148 kT) 
y V S V fi(; S 1iw 

( 0.338'/iw) ( O 66 AG) x cosh\ kT exp - . 8 7iT . (37") 

Table I lists the values of the coefficient K of 
Eq. (38) for certain alkali-halide crystals. 

Values of the probabilities of thermal excita­
tion Pnn'• arrived at from Eq. (37"), are pre­
sented in Table II (the probability is given in 
sec-t). 

TABLE I 

NaCI KCI KBr Kl 

K 3,40·10-5 1 7.42 ·10-5 I 7. 76 ·10-5 8 39 ·10-5 
Kw 1. 66 ·109 2. 96·109 2, 37.109 2 :·15 ·109 

In Table II, the last two values ( T = 700° K) 
are less precise, since the criterion kT/tiw < S 
does not hold very well. 

T "K 

293 
500 
700 

NaCI 

5,39·107 

4.19·108 
0.94.109 

TABLE II 

KCI 

3,38·108 
1.22·109 
1,91·109 

KBr 

5, 78·108 
1.44·109 

1. 74·109 

KJ 

7.60·108 

1.45·109 

1.40·109 

These tables show that at room temperature 
and at higher temperatures, the probability of 
thermal excitation of the polaron 1s - 2p is sig­
nificant. The transition into an excited state oc-

curs approximately in a time 10-8 -10-9 sec. 
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