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An expression is obtained for the fission barrier of a rotating nucleus. The fission cross 
section is estimated for the reaction of N14 ions on heavy nuclei. 

D RUIN, Polikanov, and Flerov1 studied fission mentum of inertia (as a result of deformation of 
induced by heavy particles. Ions of N14 with en- the nucleus) while the angular momentum is kept 
ergies ,...., 100 Mev were captured by nuclei of U, fixed. The stable shape during rotation of the 
Bi, Au, andRe, producing a nucleus with high ex- nucleus is, naturally, that of an axially symmetric 
citation energy and high angular momentum. The oblate ellipsoid with its axis of symmetry along 
maximum angular momentum given to the nucleus the direction of the angular momentum. Defor-
is mations of different types will either favor or 

where R1 and R* are the radii of the ion and 
the target nucleus, IJ. is the reduced mass, E 
is the energy of the ion in the center-of-mass sys­
tem, and B is the Coulomb barrier. For nuclei 
with A,...., 200 and ion energies,...., 100-200 Mev, 
the maximum angular momentum is ,...., 50 -120li. 
At such high excitation energy, this angular mo­
mentum is almost entirely associated with rota­
tion of the nucleus as a whole. The fraction of 
the angular momentum associated with the spin 
of the nucleons is easily estimated for the case of 
a Fermi gas.2 The spin of the nucleus turns out 
to be 1is = M1i2 I M, where t.. is the spacing be­
tween single particle levels ,...., 0.1 Mev, and I is 
the moment of inertia of the nucleus. For exci­
tation energies of the size we are considering, 
where shell effects can be neglected, the moment 
of inertia of the nucleus is assumed to be equal to 
that of a rigid body3 (for the case of a sphere, I 
= I0 = %AmR2, where Am and R are the mass 
and radius of the compound nucleus). On this as­
sumption, 1i2 /I ,...., 1 kev and 1is/M « 1. 

For M,...., 50 -1201i, the rotational energy 
Erot = M2 /2I is comparable with the height of the 
fission barrier (Erot,...., 5-20 Mev), so in this 
case the rotation of the nucleus must be taken 
into account in calculating the fission barrier. 

The total change in energy of the rotating nu­
cleus upon deformation is 

!),.£ = 6Es + I:J.Eq + I::!.Erol> (1) 

where t..Es, t..Eq, and t..Erot are the changes 
in the surface, Coulomb, and rotational energies. 
The last change is caused by a change in the mo-
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hinder fission. For example, deformations cor­
responding to an elongated ellipsoid with its sym­
metry axis perpendicular to the angular momen­
tum will favor fission, while the same ellipsoid 
with its axis along the angular momentum will 
hinder fission (because of the effect of the centri­
petal forces) . 

The transition from the shape of an oblate el­
lipsoid to that of a prolate ellipsoid with its sym­
me try axis perpendicular to the angular momen­
tum is accomplished by means of a deformation 
which is not axially symmetric. 

The shape of the nuclear surface is given by 
the radius vector 

r (6, cp) = R0 (1 + ] (l.lmD~0 (6, cp, 0)) , 
l,m 

(2) 

where R0 is the radius of the sphere of equal vol­

ume, D~o ( e, cp, 0) = nf ( e, cp) are the spherical 
functions with the normalization 

D~ (0, 0) = 1. 

If we consider a nucleus rotating about one of 
its axes of inertia and limit ourselves to I.= 2, 
it is convenient to introduce deformation coordi­
nates in the form4 

Then the change in the semiaxes of the ellipsoid 
will be: 

oRx = (I.R~tcos ( y - ?;) ; oRy = (I.Ro cos ( y - ~) ; 

oRz = (I.R0 cosy. 
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In these variables, we have (dropping terms 
,.., a4): 

6.£5 + 6.Eq = 4TrR.20 {-} zr:t..2 - 1~5 r:t..3 cos3 y} , 
Z = 1 -X= 1 - (Z2/A)j(Z 2/A)cro 

(3) 

where R = r 0A113; 41!T~O = 15 Mev is the magni­
tude of the surface tension, and A and Z are the 
mass and charge of the nucleus. The value of (3) 
is triply degenerate in y, since there is no pre­
ferred direction in space, so that it makes no dif­
ference along which axis the fission occurs. 

But if the nucleus is rotating and the z axis is 
directed along the angular momentum, the moment 
of inertia with respect to the z axis is 

(4) 

Let us calculate the change in energy for a ro­
tating nucleus, limiting ourselves for simplicity 
to terms of first degree in y in the rotational en­
ergy: 

(5) 

The condition for an extremal gives four solu­
tions 

12 2 4 
r:t..22 = 0, 35 r:t..zo- 5 Zr:t..zo- Y = 0, (6) 

7 2 (7'23(2 5) (1.20 = - 6 z, (1.22 = ,6) 2 z - 7 y . (7) 

Solution (7) gives two saddle points located sym­
metrically around 'Y = 0. At the saddle points the 
nucleus has a shape close to that of an axially sym­
metric elongated ellipsoid with its axis of symme­
try perpendicular to the angular momentum. 

Solution (6) corresponds to an axially symmet­
ric shape of the nucleus with its symmetry axis 
along the angular momentum. The first solution 
of (6) with a 20 > 0 gives a saddle shape, while the 
second solution of (6) with a 20 < 0 requires addi­
tional investigation. In the neighborhood of the 
second solution (6), the energy has the form: 

6.£ =canst+ i z V1 + I5yf7z2 6.2 

4 + 5 z(2- V1 + 15yf7z2)y2, 

where .6. and 'Y are small deviations from the 
values of a 20 and a 22, respectively, in (6). It is 
easy to see that for y < Ycr = 7z2/5, the solution 
gives an absolute minimum, while for y > y cr we 
get a saddle, since the coefficient of y becomes 

negative. [We also note that for y = Ycr the so­
lutions (7) and the solution of (6) for a 20 < 0 co­
incide. ] Thus for y 2:: y cr there is no stable 
state of the nucleus and, consequently, the fission 
barrier for such a nucleus is equal to zero. 

Inclusion of quadratic terms in a in .6.Erot 
does not change the qualitative results, but for a 
more exact calculation these terms cannot be neg­
lected. This gives an essential change not only in 
the value of Ycr• but also in the dependence of 
the fission barrier on angular momentum. Inclu­
sion of further terms ("' a 4 and a .tm with l 
> 2) produces little change in the result. Natu­
rally these terms become important for y close 
to y cr. If we limit.ourselves to 15% accuracy in 
the dependence of the fission barrier on angular 
momentum for z :::: 0 .3, we may drop terms ,.., a4 

and a.tm with l > 2, and neglect terms of third 
degree in a in .6.Erot· As a result of long-winded 
but straightforward computations, the height of the 
fission barrier Ef, corresponding to fission 
through the saddles (7) is equal in this approxima­
tion to 

£1 = 4TrR.20 [0.73 z3 - (1.2z + 5.6z2) y 

+ ( 4.6 + 11z) y2]' = 4TtR.20f (z, y), 

and the quantity y cr (neglecting r) is 

Ycr = 7z2/5 (1 + 6z). 

(8) 

(9) 

The deformation at the position of the minimum 
(6) is 

r:t..20 = - 1.25yfz + (0.58 + 1.8z) y2jz3; r:t..22 = 0, (10) 

and the ertergy corresponding to (10), 

6.Emin =- 0.625y2/Z + · · ·. 
Strictly.speaking, the fission barrier is the 

quantity Ef- 6.Emin• but since for y < Ycr• 
.6.Emin « Ef, and I.6.Emin 1 "' 1 Ef I only for y 
1::;$ Ycr• we can neglect .6.Emin in this case. The 
quantity f ( x, y) is shown in Fig. 1. The solid 
curves give f ( x, y) according to (8). 

We note that an axially symmetric deformation 
with symmetry axis perpendicular to the angular 
momentum gives a position of the saddle only 
slightly different from (8). The barrier height for 
such a "relative • saddle actually is the same as 
for (8). The value of f ( x, y) for axially symmet­
ric deformations is shown by the dashed line in 
Fig. 1. 

Now we find the magnitude of the fission cross 
section. For high excitation energy, two main 
processes are possible: neutron evaporation and 
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fission of the nucleus. We use the statistical for-
mulas for the neutron and fission widths5* 

r n = (PA'I•jrrK) exp (- En/T), 

r 1 = (Tj2rr) exp (- £1/T), 
(11) 

where T = ( 10UIA) 112 ~ 2 Mev for A,..., 200 and 
U ,..., 100 Mev is the excitation energy of the nu­
cleus, K = 10 Mev, En is the neutron binding en­
ergy. 

.f'(z,y) 

FIG. 1. 1- z = 0.16; 2-z = 0.20; 3- z = 0.24; 4- z=0.28; 
5-z = 0.32. 

We shall assume that the temperature and ang­
ular momentum of the compound nucleus do not 
change when a neutron is boiled off (this is valid, 
at least, for the first stage of the evaporation 
process, in which half the number of neutrons 
emerge of those which can be boiled off at the 
given excitation energy). In this case the proba­
bility of fission with emission of a number of neu­
trons equal to or less than m is 

(12) 

where r = r n + rf. The total fission cross sec­
tion for Mmax/ti » 1 is 

Ymax 

a1 == rr(R." + R.1) 2 (1- f) - 1 - ~ W,(y)dy, 
Ymax o (13) 

!L(R*+R1) 2 E-B 
Ymax = fo 4rtR20 

*1 depends on the angular momentum M not only via the 
depen~ence of the fission barrier Er on M, but also through 
the M dependence of the f~ctor in front of the exponential, 
which comes from integration of the angular distribution of 
the fission fragments. (For M ,;, 0, the fission probability 
depends on the direction of fission.) But because of the 
weak dependence of this factor on M, we shall use formula 
(11) which was derived for the case of isotropic fission. 
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FIG. 2. Curve 1- Bi, 2- Au, 3- Re. 

The number of emerging neutrons as a function 
of energy of the ions was determined6 for the re­
action on Au 197 • The same dependence is assumed 
for the reactions on Bi209 and Re 187 • The solid 
curves of Fig. 2 show the experimental curves 
for the fission cross section as a function of en­
ergy of incident ions in the laboratory system. 
The behavior of the fission cross section calcu­
lated from (13) with r 0 = 1.5 x 10-13 em [the 
dashed curve is for ( Z2 I A )cr = 52, the dot-dash 
curve for ( Z2 I A) cr = 51 ], are in qualitatively 
good agreement with experiment. The best agree­
ment is obtained for ( Z2 I A )cr = 51. This num­
her is somewhat greater than that found from the 
value of the fission barrier in u238 (Ref. 7). This 
difference is apparently explained by the fact that, 
first of all, the value of the fission barrier for Au 
andRe in the approximate expression (8) is low­
ered relative to the exact calculation8 for zero 
angular momentum ( and also for angular momenta 
different from zero) and secondly, the fission bar­
rier of u238 apparently depends essentially on shell 
effects. [Thus, for example, from tlle fission bar­
rier of Am242 , Ef ~ 6.1 Mev,9•10 we get (Z21A)cr 
= 49.] 

For higher energies of the ions than those used 
in Refs. 1 and 6, the fission cross section on nu-
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clei lighter than Au will increase, while for ener­
gies for which Ymax,..., Ycr• the fission cross 
section will actually coincide with the total reac­
tion cross section. Since the value of z will be 
greater than 0.3 for target nuclei lighter than Au, 
expression (8) will contain a large error, so we can 
only approximately give the region of ion energies 
for which the fission cross section will equal the 
total cross section. Thus, for example, for Yb 
and Dy, this region is around 150 Mev. The fis­
sion cross section, naturally, also increases with 
increasing mass of the bombarding particles. 

In conclusion I thank B. T. Geilikman and V. 
M. Strutinskii for discussion of this work and for 
valuable comments. 
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The probability of a quantum transition of a polaron from the 1s to the 2p state caused by 
thermal vibrations of the lattice is computed. The adiabatic form of perturbation theory is 
used in the calculations. At room and higher temperatures transition to the 2p state occurs 
during 10-8 -10-9 sec. 

1. INTRODUCTION 

P OLARONS are the principal carriers of current 
in ionic crystals.1 As is well known, in crystals 
which have large cohesive energies polarons are 
characterized by larged effective masses, and also 
by the existence of a fluctuation movement of the 
electron with respect to the center of gravity of 
the polaron. There exists a series of bound states, 
between which quantum transitions are possible. 
In this paper we shall consider such a transition 
between a 1s ground state and a 2p final state. 

During the transition, the momentum of the po-

laron is conserved and changes in its kinetic en­
ergy occur at the expense of changes in its effec­
tive mass. The process under consideration turns 
out to be a multiphonon process. Frenkel2 was the 
first to show that such transitions are possible in 
crystals. He pointed out that the equilibrium con­
figuration of the field oscillators changes during 
such a transition. A quantitative theory of non­
radiative transitions at F centers, based on this 
idea, was presented by a number of authors.3- 6 

Another mechanism for thermal transitions was 
suggested by Kubo.7 

In this paper the basic idea and method of the 


