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ture gradient can be set up which will persist for 
some time. A set of two glass test tubes, contain­
ing condensed mixtures whose composition lay 
within the concentration limits given above, were 
placed in a Dewar flask over liquid helium. The 
test tubes were so placed that the level corre­
sponding to the temperature of onset of crystalli­
zation passed through them. The boundary between 
the solid and liquid phases established itself at dif­
ferent levels in mixtures of different composition, 
being at a lower level in mixtures richer in hydro­
gen (see a in the phase diagram, which is a sche­
matic representation of the test tubes). The boun­
dary could be caused to shift by moving the test 
tubes to a region of lower temperature. As the 
amount of the solid phase increased, the liquid 
phase became increasingly richer in hydrogen, 
and the boundary in tubes with hydrogen-rich mix­
tures overtook the boundary in tubes containing 
more deuterium, corresponding to the equalization 
of liquid-phase concentrations when the peritectic 
region is reached. After the solid-liquid boundary 
had reached the same level in both tubes ( see b 
in the diagram), further crystallization proceeded 
at the same temperatures in both tubes. 

In addition to the thermal analysis, an x-ray 
study of the hydrogen-deuterium mixtures, and of 
the pure isotopes, was made. Some improvements 
in the method of taking the photographs made it 
possible to eliminate the parasitic lines which 
were present in the patterns of previous work, as 
has been explained. As a result, two lines were 
found to be present due to the hydrogen lattice, 
corresponding to spacings d = 3.15 A and d = 

2. 79 A; but from the deuterium lattice there was 
only one, corresponding to d = 2.84 A. No lines 
were found at wide angles, because of the rapid 
falling off of the scattered intensity. The x-ray 
patterns from mixtures with hydrogen concentra­
tions lying in the interval 20 to 80% contained 
lines from both the hydrogen and the deuterium 
lattices, with parameters only slightly altered. 
This confirms the conclusion we have expressed 
already, that the structure of hydrogen was incor­
rectly determined by the workers at Leyden, and 
that there is a region of concentration in which 
hydrogen and deuterium exist as a mixture of two 
solid phases. As to the accurate determination of 
the structures of hydrogen and deuterium, the 
question must remain open for the time being, be­
cause of the difficulty of assigning definite indices 
to x-ray patterns which contain so few lines. It is, 
however, possible to state unequivocally that they 
do have different lattices. 

The results which we have obtained, indicating 

a separation of the solid mixture of hydrogen iso­
topes into two phases, agree with the conclusions 
of Prigogine et al. 3 that there is a crticial temper­
ature below which a solid solution of isotopes must 
separate. For the hydrogen isotopes, however, 
these authors estimated a critical temperature 
below 1° K; I. Lifshitz and Stepanova4 have shown 
that the critical temperature for separation is 
equal to T = E29n ( E = ~m/m and en is the 
Debye temperature); i.e., for hydrogen isotopes 
it is of the same order as their melting point. 
This agrees completely with the shape of the phase 
diagram for the hydrogen-deuterium system, as 
reported in this letter. 

1 Kogan, Lazarev, and Bulatova, J. Exptl. Theo­
ret. Phys. (U.S.S.R.) 31, 541 (1956), Soviet Phys. 
JETP 4, 593 ( 1957 ). 

2Keesom, DeSmedt, and Mooy, Comm. Phys. 
Univ. Leyden 209d ( 1930). 

3 Prigogine, Bingham, and Jeener, Physic a 20, 
383 (1954). 

4 I. M. Lifshitz and G. I. Stepanova, J. Exptl. 
Theoret. Phys. (U.S.S.R.) 31, 156 (1956), Soviet 
Phys. JETP 4, 151 ( 1957 ). 
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IN this paper1 the conclusion was drawn, from the 
relations (22) and the fact that A2 and A3 are 
complex conjugate quantities, that the terms E2 

and E3 are in contact along the entire kz axis. 
It is, however, easy to convince oneself that for 
the "rotating" elements u2(j) the equation 

3 

~X [(U~i>)2] = 3, (1) 
i~l 

holds. According to Herring2 this indicates the ab­
sence of supplementary contact of the zones be-
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cause of time reversal. This is due to the fact that 
only lfikz,S and lfi-kz,2 belong to a single value of 
the energy, and not lfikz,S and lfi-kz,S• The state­
ments just made follow from the relations 

C~cjih. 3 = wexp{ibkz/3}·'·k ; .. , 't' z. a 

C!~-kz,J = exp {- ibkz/3} W2cJi-1<z,2 (2) 

The functional dependence E (kz) for kx = ky 
= 0 can be found by the following considerations. 
It is well known that displacement by a vector of 
the reciprocal lattice takes the entire spectrum 
over into itself, i.e., we have the equations 

E (kz + 2rc /b)= E (kz), cji,., kzWt/b = cJin, hz• (3) 

For kz- 0 we get the result that Uj,211'/b 
211'i -z 

e b Uj,O· Thus for the "open" element c! the 
laws of transformation of Uj,o and Uj,211'/b will 
be different: 

~1 ~1 

C3U1, 2ttfb = w2U1, 2tt/b; C3 U3, 2tt/b = U3. 2tt/b; 

C~U3, 2tt/b = wU2. 2rtfb· (4) 

But if we agree to characterize the n-th term 
of Eq. (1) of Ref. 1 by the· transformation law Un,k• 
then the term E1 (211'/b) must be regarded as the 
continuation of E3 (kz) for kz - 211'/b, and so on. 
In the notations adopted, Ej will be periodic func­
tions of kzb with the period 611'. 

The diagram shows the pattern of the term 
splitting, and indicates the course of the terms 
through the interval 0 s kzb s 611' by the numbers 
1, 2, 3. As follows from the diagram, the calcula­
tions of the dispersion law carried out in Ref. 1 
for points of type A have meaning only in case of 
accidental crossing of the terms E2 and Ea 
(which is permissible in principle, because of 

their different symmetries). From considerations 
of symmetry one can show that the points A1 and 
A2 in the diagram are points of zero slope. But it 
makes sense to suppose that there can also be pres­
ent additional points of zero slope, connected with 
the concrete form of the potential U ( r), as oc­
curs in electronic germanium, in which the mini­
mums are not located at the point k = 0, although 
this is a point of zero slope. These assumptions 
impose the following limitations on the functions 
U1 and U2 that transform according to the repre­
sentation r 3: pf,2 = 0. All the remaining quanti­
ties p~. = pY. = p~ . = 0 by the selection rules 

l,J l,J l,J 
(here i, j = 1, 2 ) . Then the points B1, ~ (see 
diagram) can be extremal points. The functional 
dependence of E (k) for the points r, A, K, H 
was obtained in Ref. 1 on just this assumption. It 
must be kept in mind that the contact of the bands 
along the z axis is maintained only in the approx­
imation quadratic in k. All the results of Ref. 1 
are correct with the reservations that have been 
indicated. As regards the valence band, at the 
point ~ in the diagram the degeneracy is in all 
probability removed on account of the spin-orbit 
interaction; otherwise for the four p electrons of 
tellurium the band would not be completely filled, 
and tellurium would possess metallic properties. 
For the conduction electrons the assumption of a 
strong spin-orbit splitting does not appear indis­
pensable. 

It is interesting to note that the results obtained 
in Ref. 1 are entirely applicable for lattices of the 
type C!v - C~v• for which the group of the wave 
vector k = 0 is Cav· In this case the contact of 
the bands along the kz axis is due to the fact that 
the group of the wave vector is not changed by dis­
placement along the kz axis and the point k = 0 
is a point of zero slope. The only difference is that 
in Eq. (33) one must replace all terms of the form 
Akzkx by Akzky. A similar treatment can be 
carried through for the point k = 0 in lattices for 
which the space groups are related to the point 
groups C4v, D2d, D4• In this case k = 0 is a 
point of zero slope and the zones make contact* 
along the z axis (for D2d this is a consequence 
of the symmetry with respect to time reversal2 ). 

The dispersion law of E (k) is obtained from a 
secular equation of the form: 

(C1 + C2) k! + C4k; + Cak;- E, (Cl- c2 + C4) kxky I= 0. 

(C1- C2 + C4) kxky, (C1 + C2) k~ + C4k! + C3k; - E 
(5) 

*For 0 4 the zones make contact only in the approximation quadratic in kz. 



168 LETTERS TO THE EDITOR 

For C1 = 0 Eq. (5) is the same as Eq. (33) of Ref. 
1 with A = 0. Thus the two ellipsoids3 tangent at 
the kz axis are the limiting case of the equipo­
tential surfaces for the whole sequence of space 

Dt 0 tt ct ct2 ct ct2 1 groups 2d - 2d• av - 3V• .tv - .tv• D4 
- nl0, and this can hold for tellurium type lattices 
if the relation pf,2 = 0 is fulfilled. 

In conclusion I take occasion to thank E. I. 
Rashba, who c~lled my attention to the illegitimacy 
of the conclusions drawn in Ref. 1 from the rela­
tions (22). 

1Iu. A. Firsov, J. Exptl. Theoret. Phys. 
(U.S.S.R.) 32, 1350 ( 1957 ), Soviet Phys. JETP 5, 
1101(1957). 

2c. Herring, Phys. Rev. 52, 361 (1937). 
3 Iu. A. Firsov, J. T~ch. Phys. (U.S.S.R.) 27, 

2212 ( 1957 ), Soviet Phys. JTP2', 2053 ( 1957 ). 
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As is well known, in source-free regions of an 
electrostatic field there can be no absolute max­
ima or minima of the potential; this fact excludes 
the possibility of maintaining a charged particle 
in a state of stable· equilibrium (Earnshaw's the­
orem). This same situation also excludes the pos­
sibility of localizing particles, if by localization we 
mean a state in which a particle with energy smaller 
than some given magnitude cannot go beyond the 
limits of a bounded region, no matter what the in­
itial conditions. 

The above statement does not apply in the case 
of a high-frequency electromagnetic field where, 
as we shall show below, localization of particles 
cari be accomplished. 

Consider a particle of charge e and mass m 
moving in an external electromagnetic field E ( r, t) 
= E (r )eiwt, H (r, t) = H (r )eiwt. In the nonrela­
tivistic approximation the equation of motion is 

·;.=1JE(r, t)+('Yl/c)rxH(r, t), (1) 

where TJ = e/m. If the frequency of the external 
field w is sufficiently high, the solution of Eq. 
(1) can be written as a sum of a slowly varying (in 
terms of the oscillation period of the external 
field() function r 0 (t) and an oscillating function 
r 1 (t) (frequency w). Assuming that r 1 (t) is 
much smaller than the distance L over which the 
amplitude of the external field changes markedly, 

(2) 

and neglecting terms of order I rt/L I and I ro/L J, 
averaging Eq. (1) over the period of the high-fre­
quency field we obtain an equation for r 0 (t ): 

;.~ (t} =- V<l>, <I>= ('11 I 2Cil}2 1 E 12 (3) 

Thus, the time average of the force acting on the 
particle is derivable from a potential; the potential 
is proportional to the square of the modulus of the 
electric intensity and is independent of the sign of 
the charge. 

There are an unlimited number of possibilities 
for creating potential wells ~(r ). The simplest 
of these are realized in quasi-electrostatic multi­
pole fields 

E (r, t) = V {rn P': (cos 6) cos mrp} ei"'t, 

where r, (J, and cp are the spherical ordinates 
and the P~ are the associated Legendre poly­
nomials. For example, the potential ~ in the 
field of a quasi-static axial quadrupole (m = 0, 
n = 2) is of the form ~ = const r 2(1 + 3 cos2 e), 
i.e., there is an absolute minimum at the origin.* 

To determine the motion of the particle inside 
the potential well we consider the first integral of 
Eq. (3): 

•"""const= !e!V0 • (4) 

The left-hand part of Eq. {4) ts equal to the time 
average of the kinetic energy of the particle, where 
the kinetic energy of the oscillatory (with fre­
quency w) motion plays the role of the potential 
energy. 

If the E = 0 at the center of the potential well, 
particles with energy less than or equal to V0, 

are localized within a region at the boundaries of 
which the following conditions are satisfied 

*It is interesting to note that in an axially-symmetric quad­
rupole field the original equation (1) in Cartesian coordinates 
leads to three Mathieu equations; this allows us to analyze 
the properties of the solution without the limitation imposed 
by (2). 


