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The scattering of light in a Fermi liquid is studied. An expression is obtained for the distri­
bution of the scattered light with respect to angle and frequency, and estimates are carried out 
for liquid He 3• 

LANDAU, in one of his papers, 1 has shown that it 
is possible for a special type of oscillation called 
"zero sound" to be propagated in Fermi liquids at 
sufficiently low temperatures. One of the condi­
tions for the possibility of propagating "zero sound" 
is, in particular, the inequality 

<Us't ~ 1, (1) 

where T is a relaxation time which, for He3 , is of 
the order of 10-12T-2 sec.2 If, for example, the 
temperature where ,.., 0.01° K, then a frequency of 
more than 108 cycles per second would be required 
to observe zero sound, so that such an experiment 
would be very difficult to perform. 

In place of this method, an indirect method can 
be proposed which consists in observing Rayleigh 
scattering of light in liquid He3• * As is well known, 
in Rayleigh scattering there arise, in addition to 
the principal line, satellite lines differing from it 
in frequency by 

2 u . 6 Llw= + --;;wsm 2 , 

where u is the velocity of sound and e is the 
scattering angle. The velocity of zero sound in 
He3 is of the order of 2 x 104 em/sec, so that 6-w 
,.., 10~w.2 Thus, in principle, the velocity of zero 
sound can be measured by observing the frequency 
distribution of the scattered light. The require­
ment (1) can be satisfied because of the high fre­
quency corresponding to visible light. 

Apart from the above considerations, the scat­
tering of light in a Fermi liquid at sufficiently low 
temperatures has several specific features, which 
make it of interest to carry out a theoretical study 

*The idea of using Rayleigh scattering was first suggested 
by S. P. Kapitza. 

of this phenomenon, particularly the distribution 
of intensity with respect to frequency.* 

As is well known, the frequency dependence and 
the angular distribution for Rayleigh scattering of 
unpolarized light are given by the equation t 

"'. 1 I ,. , . 12 3 dQ 
dh = 67tc• 21tV laD t.co (r) e-<~r dV 4 ( 1 + cos2 6) 4" d!lw, 

(2) 

where w is the frequency of the incident light, e 
is the scattering angle, q is the change in the ~ave 
vector of the light, equal in absolute magnitude to 
(2w/c)sin(0/2), and oD6.w is the Fourier com­
ponent of the fluctuation of the dielectric permea­
bility oD < t ): 

t, 

BD t.co = )- ~ BD (t) eit.cot dt, 
r to o 

(3) 

where t 0 is a certain large quantity which, in the 
final equation, will go to infinity. 

The bar in equation (2) denotes averaging over 
the fluctuations. In what follows we shall, for 
simplicity, set the volume of the system equal to 
unity. 

In view of the very small polarizability of he­
lium atoms, it is possible to consider that the 
change in the dielectric permeability is due to 
density fluctuations, i.e., oD = ( 8D/8N) oN, where 
N is the number of particles per unit volume. 
However, according to the general theory of Fermi 

*We note that at high temperatures, where W8 't « 1, the 
scattering of light will be desc~ibed by the usual equations.8 

tHere dh is the so-called differential coefficient of ex­
tinction. The integral over dh with respect to cin and d!lw 
gives the total coefficient of extinction h, representing the 
logarithmic decrement of the attenuation of the photon flux 
density in the medium. 
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liquids set forth by Landau,4 the number of exci­
tations is equal to the number of atoms of the liq­
uid. Consequently it is possible to write 

~ 8D"'"' (r) e-iqr dV = ~~ ~ 8nq,t>."' (p) d-rp, (4) 

d-rp = 2dpx dpy dpz / (27t'li) 3, 

where c5nq,t..w (p) is the Fourier component with 
respect to r and t [the latter in the sense of 
Eq. (3)] of the fluctuation of the excitation distri­
bution function. 

Before proceeding with further calculations, we 
point out one important circumstance. In Eq. (2) 
the average is taken over all possible fluctuations. 
In the region of temperatures and frequencies 
where 'fit..w 2:: kT, it is necessary to take account 
of quantum effects in the averaging process. This 
can be done satisfactorily, if one knows the result 
for the purely classical case (kT » 'fit..w), by in­
troducing a certain correction factor. For scat­
tering in which there is an increase of the fre­
quency by t..w (anti-Stokes scattering), the fac­
tor is ('fit..w/kT) N ( t..w ); for scattering in which 
the frequency decreases (Stokes scattering), the 
factor is ( 'fit..w /kT) [ N ( t..w ) + 1 ], where N ( t..w ) 
is the Bose distribution function. If a negative 
t..w is used to describe Stokes scattering, it turns 
out that, because of the relation N ( - t..w) + 1 = 

- N ( t..w) , the correction factor for both cases 
has the form 

1i~w ( 'lit>.ooJkT _ J]-1 
kT e . (5) 

We shall suppose thus that kT » 'fiw. To find 
the fluctuations of the distribution function we 
make use of the method suggested by Rytov5 and 
by Landau and Lifshitz6 for calculating fluctuations 
in electrodynamics and hydrodynamics.* In using 
this method we find the fluctuations of a "stray 
force" entering into the kinetic equation, where­
upon by solving this equation we also obtain the 
fluctuations of the distribution function. 

For the case of a Fermi liquid we will proceed 
from the kinetic equation, which we write in the 
form 

aan + aan ~ _ ono 1 f ( ') aan (p') d-e , 
at or iJp iJp ~ p, p iJr p 

=I (on)+ y (p, r, t). 

*The authors are grateful to L. P. Gor'kov, I. E. 
Dzialoshinskii, and L. P. Pitaevskii for directing their 
attention to the possibility of applying this method to the 
kinetic equation. 

(6) 

After the elimination of the "stray force" 
y(p, r, t), this equation represents, in the ap­
proximation linear in c5n, the kinetic equation 
for Fermi liquids found by Landau; here E is the 
energy of an excitation, n0 the equilibrium dis­
tribution function, and f (p, p') the function in­
troduced in Ref. 4. 

In what follows we shall be interested only in 
frequencies and temperatures for which Eq. (1) is 
satisfied, i.e., for which it is possible to ignore 
collisions. The detailed form of the collision inte­
gral will not be essential to us, since it plays the 
role of an auxiliary quantity in the calculations 
and in the final results can be set equal to zero. 
In view of this we set 

I (on)=- onf'r, (7) 

where T is a large quantity. It is next necessary 
to find the rate of change of the entropy. Remem­
bering that the number of particles and the total 
energy are fixed and making use of the equation de­
termining f ( p, p' ) , 

we find that 

oE (p) = ~ f (p, p') on (p') d-cp'• 

S = - k {\an [/(8n) + y] d-cp dV 
.) n0 (1- n0 ) 

(8) 

+ "k~ ~ f (p, p') a (r- r') ani (on') d-cp dV d-cp' dV'}. (9) 

If we remember also that n0 ( 1 - n0 ) ::::: kTc5 ( E - p.), 
where p. is the chemical potential, it is not diffi­
cult to see that c5n (P) should have the form 

2n (p) =on"(&, cp) 0 (s- fL), (10) 

where .a and cp are the polar angles of the vector 
p. This equation indicates that fluctuations of the 
distribution function take place only in the region 
of the Fermi surface. 

It is natural to take the same form for y: 

y(p) =y•(&, cp)a(E-fL). (11) 

We now introduce the notation 

F (y) = [t (p, p') d;:' 1~•'-fL' 
where 'Y is the angle between p and p', and we 
expand c5n, y, and F in spherical harmonics: 

"' n 
on•(&,'f')=~ ~ A~'p~'(cos1l-)e;""', 

n=om=-~ 

n 

y•(&,'f')=~ ~ y~'P':(cos&)eim'", (12) 
n=O m=-n 

00 

F (y) = 2 FnPn (cos·;). 
n=O 
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Since <'in € and yE are real quantities, 

Making use of Eq. (7) for the collision integral, we obtain the following equation for the rate of change of 
the entropy: 

S -· \ dV(d"P) _!_ ~ ~ (~ + !) _1_(n + i m i)! (~~~ _ '")A-m 
- ) de _ T ..::J .LJ 2n + 1 2n + 1 (n- I m I)! T Yn n • 

E:-!J. H=Om=-n 

(13) 

We now introduce the notation 

xm =-Am/"+ ym. 
n · n n (14) 

Then if Eq. (13) is to have the form8 

we have to take as the generalized force Xi the 
expression 

m_...!._(d"P) ( Fn ) 1 (n+Jmj)! -m (15) 
Xn- T de. "~fl.\2n+1 + 1 2n+1(n-lmJ)!An · 

In Eq. (14) the quantity y~ plays the role of the 
"stray force." Writing this expression in the form 

)em=- "' m, m'X"~' + ym 
n. .L.J Y n, n' n n ' 

n', m' 

where the coefficients 'Y are determined without 
difficulty from (15), we have, according to the gen­
eral theory of fluctuations, 

y~(r, t) Y';' (r', t') = k (y;;:·,7' + Y';/.:';:) o (t - t') o (r- r') 

= ~On, n' Om,-m' o (r- r') o (t- t') (16) 

x[kr(d"P) ( Fn !) 1 (n+Jml)!]-~ 
de <~fl. 2n+1 + 2n+1(n-Jml)! 

Finally, having made use of (12) and the relation 

~ (2n +I) Pn (cosy)= 2o (cosy- I), 
n 

we obtain after certain transformations the gen­
eral expression 

y(p, r, t)y(p', r', t') = ZkT o(r-r')o(t- t') 
'r 

(17) 

With the aid of this expression and the kinetic 
equation (6) we can calculate those fluctuations of 
the distribution function which are of interest to 
us. Since for the general case of an arbitrary 

function f this is a rather complex procedure, we 
restrict ourselves to the case f = const. * 

Making use of the fact that the fluctuations occur 
only on the Fermi surface, and using Eq. (6), we 
express <'>nc1,Aw( .'t, cp) in terms of the correspond­
ing Fourier components of y€ ( ,'}, cp). This gives 

\ Y~. 11., (~, q>) (d0/4rc) I ( 1 F (' i (qv) (d0/4rc) ), (18) 
J -iw+1!-r+iqv \ + 0 j-zw+1J-r+zqv 

where v = ( 8€/&p )€ = . Averaging the square of 
the absolute value of tCis expression with the help 
of Eq. (17) [keeping in mind that the Fourier com­
ponent with respect to the time is derived accord­
ing to Eq. (3) ], we find 

(19) 

-1~\14- ~ qvx-~+if-r I'J/1 1 + ~0 ~ qvx~:d:ij-r 1• 
-1 -1 

We are interested in the limiting value of this 
expression when T - oo. When qv > I Aw l, the 
denominator has no poles, and what turns out to 
be important is the residue of the integral in the 
numerator. For this we obtain 

1 
2rc I Oflqll., (p) d't P I 

(20) 

= kT (d-r [J_) __!_ { [I + F (I _ t:>.w In qv + l:>.w)J• + (f 0l:>.wrc)2}-1 
de qv o 2qv qv - l:>.w 2qv 

In the opposite case, i.e., when qv < I 6-w I, it 
is the pole in the denominator of (19) which is im­
portant. It is not difficult to see that such a pole 
arises if F 0 > 0 and the equality 6-w = ± 'I}Clv 
holds, where 71 satisfies the equation 

• Actually, for He3 , the function f is not constant. it is 
possible to find the first two terms of the series (12) from the 
experimental data,2 which give F(y) = 5.2 + 1.3 cosy. 
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1 +F0 [1-flnG~~)J=o. (21) 

This expression agrees with Eq. (14) of Ref. 1 for 
the velocity of zero sound. Using the relation 

we obtain without difficulty 

(22) 
-kT('!:_~) 2("'12-1) 2 [o(Llw-Tjqv)+()(!lw+'llqv)]. 
- \de •~!J. f 0 (1+Fo-"'1) 

Thus the angular distribution and the frequency de­
pendence of the scattered light are expressed by 
the following equation [in whichthe quantum factor 
(5) has been introduced]: 

"'• (aD )2 (d-r P) 2 !l) ru'..Cil 
dh = 47tc4 aN de. •~1'- ( 1 + cos eli"'"'lkf- 1 

[e (qv -I ~(i) I) I J r 1 (1- ~(i) In qv·+ ~(i) 1]2 +(fo~"'")2} 
X 2qv ll +Po 2qv qv ~"'; -2qv 

where 

6 ( )={1 y>O 
y 0 <O y . 

The result obtained has a simple physical sig­
nificance. As can be easily seen, the frequency 
spectrum consists of a central part - qv < ~w 
< qv and two sharp lines at ~w = ± 17qv. The 
central part corresponds to the Doppler width of 
the principal line. A comparison of Eq. (1) with 
Eq. (14) of Ref. 1, concerning the oscillations of 
a Fermi ,liquid, shows that the secondary lines 
appear as satellites in Rayleigh scattering, aris­
ing in connection with the possibility of propagat­
ing zero sound ( 1JV = u). The relation between the 
intensities of the central part and of the secondary 
satellites depends in general upon the scattering 
angle. In the limiting cases of high temperatures 
(kT » l'iwu/c) and low temperatures (kT « l'iw 
xu/c), however, this expression does not depend 
on angle. It is possible to carry out a numerical 
estimate for He3, using the well known par am­
eters.2 It turns out that, for high temperatures, 
the central part has about 20% of the total inten­
sity, and the secondary lines about 40% each. At 
low temperatures the distribution will be cut off 
on the side of positive ~w because of the quan­
tum factor. In particular, of the two satellites 
there will remain only the Stokes line for ~w = 

- uq, with 90% of the intensity. Only 10% of the 
total intensity will appear in the central line. 

The total scattering intensity is obtained by in­
tegrating (23) with respect to Mw and dQ. For 
high temperatures ( kT » l'i~w ...., l'iwu/ c) it is 
equal to 

"'•kr(av)2(d"P.) J 
h = 61tc• aN de •-1'- 1 ' 

(24) 

where J 1 is a numerical integral, equal to about 
0.5 for He3• In the quantum limit ( kT « l'iwu/ c) 
we have 

(25) 

Here J 2 is a numerical integral which is equal to 
about 0.2 for He3• In order to make a quantitative 
estimate of the above expressions for He3, it is 
necessary to know the quantity 8D/8N. There 
have been no measurements of this quantity; con­
sequently we set D - 1 proportional to N, and 
evaluate the coefficient of proportionality from 
data on liquid He4• For a wavelength ;\ = 5461 A 
the index of refraction of liquid He4 is equal to 
1.027. This gives 8D/8N = 2.5 x 10-24 • Substitu­
tion in Eqs. (24) and (25) gives 

h (He3 ) - 10-69 w4T cm-1 for w ~ 2-1017 T sec.-1 , 

h(He3) -10-87 w5 cm-1 for w~ 2-1017 T sec-1 • (26) 

It is necessary to keep in mind that the frequency 
has to satisfy Eq. (1), i.e., ~w » 1/T, or 

(27) 

If this condition were not satisfied, the line 
width would be too great. Thus for the visible re­
gion of frequencies, temperatures below 0.05° K 
are necessary. It is not difficult to see that to 
temperatures of the order of 0.01° Kin the visible 
range of frequencies there will correspond a value 
of l'i(He3 ) ..... 10-9 cm-1, which certainly is too 
small for the effect to be measured.* Because of 
the fact that w enters into the expression for h 
to a very high power, however, it is possible that 
the scattering can be successfully measured in 
the ultraviolet region. 

In conclusion the authors express their grati­
tude to Academician L. D. Landau for his interest 
in the work. 

*For liquid He4 in the visible region, h"' 10·• em·• (Ref. 
7). (Approximately the same result ought to be obtained for 
He1 for Lloo 't « 1.) Measurements of h have been made for 
He4 (Refs. 8, 9), but they were at the limit of the experimental 
capabilities. 
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A method for treatment of various problems connected with static distortions of crystal lattices 
is proposed, in which the distortions are related to fluctuation waves of the composition and of 
the internal parameters. Scattering of x-rays and thermal neutrons in binary solutions of arbi­
trary composition and with arbitrary values of the short and long range order parameters is 
considered. Anisotropy of the crystal and its atomic structure are taken into account explicitly. 
The scattering intensity can be expressed in terms of the thermodynamical characteristics of 
the solution ( or correlation parameters ) , elastic moduli ( or interatomic interaction constants), 
and also in terms of parameters characterizing the dependence on the concentration of the cell 
shape and dimensions. The particular cases of ideal, dilute, almost completely ordered solu­
tions and also of solutions located near the critical point on the decay curve or near phase-tran­
sition points of the second kind are investigated. The diffuse scattering intensity distribution in 
a Cu3Au so~ution, calculated without making use of the theoretical parameters, agrees satisfac­
torily with the experimental distribution. 

IN earlier papers1•2 (quoted in the following as I 
and II) the diffuse scattering of x-rays and neu­
trons in solid solutions was investigated within the 
framework of phenomenological1 and microscopic2 

theories. In the course of these investigations it 
was assumed that the sole cause giving rise to dif­
fuse scattering was the random distribution of the 
atoms among the lattice points of a geometrically 
ideal lattice. In this article we shall investigate 
the influence of geometrical distortions of the lat-

tice, associated with the difference in the size of 
atoms of different kinds, on the scattering. During 
the last few years an intensive experimental study 
was begun of the diffuse scattering due to the above 
cause and of the weakening of the lines in an x-ray 
photograph ( see, for example, Ref. 3 where refer­
ences to other work are given). These problems 
have been studied theoretically for several particu­
lar cases in a number of papers.4- 9 

In this article we investigate the general case 


