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Stability against small perturbations of the discontinuity surface is investigated for shock 
waves in an arbitrary medium, described by relativistic equations for an ideal fluid.* 

1. INTRODUCTION 

THE concept of an ideal fluid is applicable in two 
limiting cases of relativistic hydrodynamics: at 
sufficiently low temperatures, when the mean num­
ber of produced pairs is much smaller than the 
number of virtual particles, and in the ultra-rela­
tivistic case of super-high temperatures, when the 
mean number of pairs is much larger than the num­
ber of virtual particles. In fact, it follows from 
the equations t 

aT~ I axk = 0, T;k = WU;Uk + pg;k (1.1) 

that the entropy flux density satisfies the equation 

(1.2) 

In the first case, which we shall call relativ­
istic, the equation of continuity holds for the num­
ber of particles in zero approximation of the ratio 
of the mean number of pairs to the number of par­
ticles 

an1 1 ax1 = o. (1.3) 

In the ultra-relativistic limit the chemical po­
tential is equal to zero in zeroth approximation of 
the ratio of virtual particles to the number of pairs: 

*In classical hydrodynamics this problem was solved by 
D'iakov. 1 

tOur notation follows Ch. XV of the oook by Landau and 
Lifshitz. 2 

fL = 0. (1.4) 

In both limiting cases (and only then ) , the en­
tropy is conserved: 

ao1 1ax1 = 0. (1.5) 

It should be noted that, as shown by Khalatni­
kov,3 it is possible to obtain the equations for the 
ultra-relativistic case, (1.1) and (1.5) from Eqs. 
(1.1) and (1.3) of the relativistic case by a simple 
substitution: 

w-->-Tcr, n-->-cr, (1.6) 
and putting p. = 0.* We shall make use of this re­
sult later. 

*Thermodynamical relations necessary for the complete­
ness of the system (with exception of the equation of state) 
remain valid after the substitution (1.6), in view of Eq. (1.4): 
if fL = 0, n does not enter into the thermodynamical identities, 
and w = Ta. The equations for the ultra-relativistic case can 
therefore be obtained at any stage from the relativistic equa­
tions if one does not use the equation of state explicitly. If 
the boundary conditions are obtained directly from the equa­
tions, or if there is no condition imposed on n at the bound­
ary, then the above procedure permits us to obtain the corre­
sponding solution for the ultra-relativistic case from the so­
lution of the boundary problem. 

If we note that conditions at hydrodynamic discontinuities 
do not follow from equations of the ideal fluid, but represent 
additional physical requirements (following from the equations 
with dissipation), it becomes clear that the substitution (1.6) 
is applicable to tangential and is inapplicable to normal dis­
continuities, since n enters the boundary conditions for the 
latter. 
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It should also be noted that considerations of 
stability of shock waves against motion of the sur­
fact of discontinuity as a whole, which lead to the 
following inequalities in the non-relativistic case: 

(1. 7) 

are fully valid in relativistic hydrodynamics. Here 
v and v denote the component normal to the sur­
face of discontinuity of the three-dimensional hy­
drodynamical velocity in the system where the dis­
continuity is at rest, white s and s is the veloc­
ity of sound in the eigen-system; the bar denotes 
values in the part of the medium before the on­
coming shock wave. 

In fact, according to Einstein's formula, we 
have for the velocity of the disturbance in the sys­
tem where the discontinuity is at rest, 

(v+s)/(I+vs), (v+s)/(l+vs). 

The sign of the above expressions is determined 
by the numerator only, i.e., the choice of the sign 
determining the possibility or impossibility of 
propagation of the disturbance from the surface of 
discontinuity leads to the same inequalities as ob­
tained from the Galileo transformation. It is nec­
essary for the sake of stability that the number of 
parameters describing the perturbation should not 
exceed the number of equations. The inequalities 
(1. 7) lead to such a minimum number of param­
eters both in the non-relativistic2 and relativistic 
and ultra-relativistic cases. It should be noted 
that, although the number of equations in the ultra­
relativistic case is smaller by one, the number of 
parameters decreases also by the same amount 
since there are no separate sound and entropy dis­
turbances. 

2. VARIATIONAL EQUATIONS OF MOTION 

According to (1. 7), the motion of a shock wave 
should be supersonic in the part of the medium 
into which it enters, and subsonic in the region 
left behind. This means that disturbances of the 
surface of discontinuity will influence only the flow 
behind the wave. Let us choose the axis y = x2 

in the direction of the normal to the surface of dis­
continuity, aligned with the hydrodynamical veloc­
ity v, and the axis x = x1 in the direction of the 
wave vector k1 of the disturbance, which will be 
specified as a traveling wave of small amplitude 
1): 

(2 .1) 

Variation oA of an arbitrary variable A be­
hind the shock wave will be of the form of a trav­
eling wave with wave vectors k1 and k2 and fre-

quency k0 

OA ~ exp (ikzx1), aOA I axz = ikz~A. 

Next we shall write linearized equations for the 
amplitudes: 

k10Tl = 0; oTl = owuiu1 + wou1u1 + wu;13u1; (2.2) 

(2 .3) 

Multiplying Eq. (2 .2) by ui, and making use of 
Eq. (2 .3) and of the thermodynamical identity 

w cr 1 d -- = Td-- + -- dp, 
n n n 

we obtain easily 

It is convenient to transform Eq. (2.2) into 

kzul {ui'ilp + woud+ k/3p = 0. 

(2.4) 

(2 .5) 

(2 .6) 

It can be seen from Eq. (2.5) that there are two 
types of solutions. The first represents turbulent 
entropy waves carried by the liquid current 

(2.7) 

It follows immediately from (2.3) and (2.6) that 

(2 .8) 

The second type of solutions (disturbances of 
the sound-wave type) is 

kf'>u 1 =1= 0. (2 .9) 

Omitting the superscripts in kl2) and op(2), we 
have 

Multipl~ng Eq. (2 .6) by ki we obtain an equa­
tion for k(2) 

{2.11) 

In the ultra-relativistic case, all relations are 
obtained from the above through the substitution 
(1.6). The solutions of the first type represent 
turbulent waves. In Eq. (2.11), s denotes the ve­
locity of sound: s - 2 = ( 8e/8p >a In. 

3. BOUNDARY CONDITIONS AT THE SURFACE 
OF DISCONTINUITY 

The continuity condition 

[T/] = 0, i = f, "• 0. (3 .1) 

is satisfied at a normal discontinuity. The prime 
denotes a system of coordinates in which the dis­
turbed discontinuity is at rest, f is the normal, 
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and T the tangent to the surface of discontinuity. 
In addition, we have in the relativistic case the 
following condition: 

[n'f] = 0. (3.2) 

The Rankine-Hugoniot equation, relating the 
thermodynamical variables at the discontinuity, 
is a consequence of E qs. (3 .1) and (3 .2) . It fol­
lows from the equation of state and the Rankine­
Hugoniot equation that only one thermodynamical 
variable is independent at the discontinuity (we 
shall choose the pressure p). It should be noted 
that we deal with variables on one side of the sur­
face of discontinuity only- behind the shock wave. 

In the ultra-relativistic case it is clear from 
thermodynamical identities that there is only one 
independent thermodynamical variable at all. In 
both cases, therefore, we have at the discontinuity 

ow= qop, (3.3) 

where, in the relativistic case 

q = (awlaP)H (3.4) 

is the derivative along the Hugoniot adiabatic. In 
ultra-relativistic case, when there is no Hugoniot 
equation, but J.L = 0, 

q = dwl dp. (3.5) 

The system (3.1) and (3.3) is the complete sys­
tem of boundary conditions at the perturbed dis­
continuity in linear approximation for both limit­
ing cases. 

We shall write down certain relations at the 
discontinuity, omitting the primes. From Eq. 
(3.1) we have 

[WUJ] = - (p), [wu1u,] = 0, [WUjU 0 ] = 0. (3 .6) 

It follows that the discontinuities of the compo­
nents of the three-dimensional velocity are: 

[u, I U0 ] = 0, [Uj I U0] = - [p] I WUJU 0 • (3. 7) 

Furthermore, 

The last relation yields for u7 = 0 

[e] j[p] = uoiio I uiiJ. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

All the above relations are valid for the ultra­
relativistic case as well. Making use of Eq. (3.2), 
ur = jV, where V = 1/n and [j] = 0, we obtain 

j2 =- [p] I [wV2]. (3.12) 

Since, according to (3.6) we have 

[w2u]u~] = [w2u]u~] = 0, 

then it follows that 

j2 =- [w2V2] 1 [w2V4]. (3.13) 

Eliminating j2 from Eqs. (3.12) and (3.13), we ob­
tain the Rankine-Hugoniot equation:4 

(3.14) 

4. DERIVATION OF THE CHARACTERISTIC 
EQUATION 

In order to write down the perturbed boundary 
conditions it is necessary to carry out a transfor­
mation from the system (I) in which the unper­
turbed discontinuity surface is at rest, to the sys­
tem (II) where the normal velocity of the per­
turbed discontinuity vanishes. The Lorentz for­
mulae of transformation to the moving (primed) 
system (the motion along the i-axis with a 4-ve­
locity ui) are: 

A;= U0A1 + U1A0 , A~= U0A0 +ViAl, (4.1) 

where there is no summation over double indices. 
From the equation of the perturbed surface (2.1) 

we find the normal fa (- ik77, 1, 0) and the tan­
gent Ta ( 1, ik7], 0), k = k1• The velocity of the 
surface of discontinuity in (I) is 

(4.2) 

The perturbed hydrodynamical velocities in (I) 
are 

Uy + OUy, OUx, Uo + ouo; Uy, 0, Uo· (4.3) 

We next project on the directions of f and T: 

Df = ik0Tj; D~ = 0; Uf = Uy + ouy; UJ = Uy; 

By means of Eq. (4.1) we go over to system(IT), 
assuming that Ui = Dr = ik077: 

uj = Uy + OUy + iko'fiUo, u~ = OUx + ikYjUy, 

u 0' = U 0 + ou0 + ik0TjUy, (4.4) 

uj = u_v + ik0r,u0 , u: = ik'fjuy. u~ = uo + iko'fluy. 

It follows from uiui = -1 that 

(4.5) 

We shall denote by ..., the perturbed variables 

w = w +ow, w = w, {) = p + op, ;; = j). (4.6) 
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Boundary conditions (3.1) become then 

[wu?J =- iPL [wu~u~J = o, [wuju~J = o, 

substituting Eqs. (4.4)- (4.6) into the above and 
eliminating Tl• we find 

k 1 + u; (2- q) 
0 

oux = -k-0 Pop, P = • 
2u0wu; ([e]/[p ]-1) 

(4.7) 

Buy= Qop, Q =- (1 + qu;) 12wu:,- (4.8) 

In carrying out the transformations it is conven­
ient to use the formulae of Sec. 3. 

We shall now make use of the variational equa­
tions of motion 

According to Eqs. (4.5) and (2.7), the first of con­
ditions (2 .8) becomes 

kuyu03u~> + k0ou~1 = Oo 

Multiplying Eq. (4.7) by kuyuo and Eq. (4.8) by 
k0, adding them together, and then substituting 
ouP> from Eq. (2 .1) we obtain, since op f; 0 

k2k0uyu0 + k~(uyk 1u1 + ky) =- wkzu1 (k2uyu0 P + k~Q)o (4.9) 

Equations (4.9) and (2.11) constitute a system of 
characteristic equations for k0 and ky as func­
tions of k in both limits of relativistic hydrody­
namics. The variables P and. Q which are-in­
dependent of kl are given by Eqs. (4.7) and (4.8) 
and the parameter q by Eqs. (3.4) and (3.5) for 
the relativistic and ultra-relativistic cases re­
spectively. 

5. THE CHARACTERISTIC EQUATION 

The dispersion relations obtained above de­
scribe, in the coordinate system I in which the 
medium as a whole moves with the 4-velocity ui, 
the possible motions of the medium, due to per­
turbations of the boundary conditions at the dis­
continuity, taking place behind the shock wave. 
Let us now go over to a system III where the un­
disturbed medium behind the shock wave is at 
rest (we denote variables in III by ~). We have 

ky=U0k~-k0"Uy, kx-k=k", k0=U0k~-k~uy, 

u: = u~ = 0; u~ = - 10 

Let us put k0" = n. Then k~ul = -n. 
Equation (2.11) becomes in ill 

kz + k·; = Q2 I s2 0 

Let us introduce polar coordinates 

k" = (l.ll s)sin7; k; = (l.lj s) COS'f'o 

(5.1) 

(5.2) 

Equation (5.1) becomes then an identity. In sys­
tem I we have 

( uo ) k n ° ky = Q 5 cos '!' + uy , = 5 sm <p, 

k0 = - Q (uo + 5:. cos <p) o 
s ' 

(5.3) 

Substituting into Eq. (4.9) we obtain the char­
acteristic equation for cos cp: 

cos2 m __ Y _..l'_wp __ Y_ {u02u u uo u2wQ} 
r s• s2 s• 

(5.4) 

{u u02 u u0 } + 7--uo2wQ+-f.-wP =00 

Equation (5.4) corresponds, in non-relativistic 
hydrodynamics, to D' iakov's characteristic equa­
tion.1 Like that equation, Eq. (5.4) is quadratic, 
which makes it possible to study it by the method 
of Ref. 1, as indicated by Landau. 

6. INVESTIGATION OF THE CHARACTERISTIC 
EQUATION 

Using Eq. (5 .2), we can express n in terms of 
k (assumed to be real): 

Q == sklsincp; (6 .1) 

ky= si:\, c: cos:p-t--uy). k0 = - 5i~k'P (uo + 1cos<p)o 

(6.2) 

The conditions of instability are 

Imk0 <0, Irnky>Oo 

Let us introduce real variables p and lfJ 

cot (r>l2) = pei<li 

Using the inequalities 

u0ls- uy > 0, u0 - Uyls > 0, 

(6.3) 

(6.4) 

we can write Eq. (6 .3) in the following form: 

1 +cos 'P uo +_uJl/s 
Jx 1 > 1, where x = i-cos 'Po uo _ uyfs o (6.5) 

Since it is necessary for instability that k0 and 
ky were complex, then cos cp and sin cp cannot 
be real simultaneously. We have therefore 

Jcos?l>l for Imcoscp=Oo (6.6) 

Rearranging Eq. (5.4) in terms of x we obtain 

x2 (uo2- u; / s2) (uols- wQ) 

+ 2x {2 (u0uyjs2 ) r.vP- wQ (u02 - u~ I s2)} 

- (u02- u2 1 s2) (u0ls + wQ) = 00 y 

(6 .7) ' 
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It is necessary to find such relations between 
the coefficients that inequality (6 .5) is satisfied 
for at least one root of Eq. (6. 7). Let us denote 
the roots by x1 and x2; we have then the follow-· 
ing well-known inequalities for the quadratic equa­
tion ax2 + bx + c = 0: 

)al>lc), Jbi<Ja+cl,_ jx11, lx21<I; (6.8) 

lal<lcl, ibi<Ja+cl, lx1:, lx21>1; (6.9) 

laj§lcj, Jbi>Ja+cJ, lx1I<I, Jx2J>I. (6.10) 

It is easy to see that inequalities (6.9) are in 
contradiction with Eq. (6. 7). The conditions of in­
stability are therefore represented by (6.10) where 
x1 and x2 are real. 

According to Eq. (6.5) cos cp is then >:>eal as 
well, i.e., relation (6 .6) should be satisfied. This 
is possible only for x < 0. Consequently, for in­
stability it is necessary that one root of Eq. (6. 7) 
lies in the interval ( - oo, - 1). The condition for 
this is 

a>D, a-b+c<O; 

a<O, a-b +c>O. 

We find a - b + c 

(6.11) 

(6.12) 

(6.13) 

It follows that for the regions of absolute insta­
bility 

(6.14) 

or 

(6 .15) 

Relations (6.14) and (6.15) correspond, in non-rel­
ativistic hydrodynamics, to the regions of instabil­
ity obtained by D' iakov. 

Inequality (6.14) can be written in a more re­
vealing form using the identity q = ( 8e/8p )H + 1 

2> 2 h _1 V(oe) V SH' W ere SH = ap H (6.16) 

is the "sound velocity" on the Hugoniot adiabatic. 
In the ultra-relativistic case one should substi­

tute in Eq. (6.7) s 2 for sk according to Eq. (3.5). 
Condition (6.16) becomes then identical with that 
of the instability region (1. 7), that is, it does not 
represent an additional limitation. Inequality 
(6.15) cannot be satisfied since q > 0. 

For ultra-relativistic shock waves, therefore, 
there is no region of absolute instability. 

7. SPONTANEOUS EMISSION OF SOUND FROM 
THE DISCONTINUITY 

An interesting result of the work of D' iakov is 
the discovery of regions in which the solution is 
of the form of undamped ( in linear approximation) 
waves propagating from the discontinuity. We can­
not exclude the possibility that, in spontaneous 
emission of sound, the energy of shock wave is 
fed into the emitted waves during such a long per­
iod that we have to consider the phenomenon as 
separate from the cases of stable and unstable 
motion. 

We shall find the condition for spontaneous 
emission of sound. from the discontinuity. In sys­
tem (I) where the unperturbed discontinuity is at 
rest (and the fluid moves with velocity ui), the 
velocity Va of waves emitted from the discon­
tinuity should have a positive normal component 
Vy (in contrast to waves incident upon the discon­
tinuity, for which Vy is negative). The condition 
for emission is 

(7 .1) 

Velocity V a can be found, for example, by differ­
entiating Eq. (2 .11) 

(7.2) 

We obtain: 

(7.3) 

Using Eq. (5.3) we shall express Vy through 
variables measured in system (III) where the 
fluid behind the discontinuity is at res.t: 

V _ uy!s+uocos<p 
Y - u0 js + uy cos <p 

(7 .4) 

The condition of spontaneous emission of sound 
(7 .1) becomes 

(7 .5) 

where M is the Mach nqmber; M = v/s = uy/su0• 

The waves emitted by the discontinuity can 
move, with respect to fluid at rest, in the direc­
tion opposite to the motion of the shock wave 
( 0 < cos cp < 1) as well as following it (- M < 
cos cp < 0) . In the latter case the emitted sound 
wave lags behind the shock wave, while continuing 
to propagate in the same direction as seen by ob­
server situated in system (ill). 

Inequality (7 .5) remains valid in non-relativ­
istic hydrodynamics.5 We shall find now by means 
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of Sturm's theorem the condition that the roots of 
Eq. (5 .4) lie outside the instability region (6 .14) -
(6 .15) and that at least one of them satisfies the 
relation (7 .5). For the region of spontaneous 
emission of sound we obtain the double inequality 

- -~ (. 1 + 2u0 5!)' < q 
u~ s 

1 1-M2 - (M 2;u2 a) (1 + 2u2 ) (7.6\ <-- y y ~ 
u~ 1-M2 + M2ju~a 

where 

a= [wJ f[pJ- 2 = (1- vv) 1 vv. 

In the ultra-relativistic case q = 4, a = 2, 
s- 2 = 3. 

The left-hand side of inequality (7 .6) is satis­
fied for all values of v. The right-hand side can 
be written in the following form: 

v4- 4fgvz + l/27 ';> 0, 

which is satisfied by v < % and v > 1/.J3. The 
latter case corresponds to instability and should 
be excluded. Making use of the relation vV = % 
which follows for the ultra-relativistic case from 
Eq. (3.11) we obtain that for emission it is neces­
sary that v > 1, i.e., the velocity of propagation 
of shock waves in the part of the medium ahead of 
the front should be greater than velocity of light. 
The spontaneous emission of sound is therefore 
impossible in ultra-relativistic hydrodynamics 
and, when the relation (1. 7) is satisfied, shock 
waves are absolutely stable. 

In conclusion the author wishes to express his 
gratitude to I. M. Khalatnikov for suggesting the 
present work, and to I. M. Lifshitz, I. M. K;halat­
nikov, and V. L. German for valuable remarks in 
discussion. 

Note added in proof (December 22, 1957). In 
an article published in November, 1957, Iordanskii6 

treats by a somewhat different method the stabil-

ity of non-relativistic shock waves with respect to 
small perturbations of the fluid behind the wave. 
The regions of absolute instability found by him 
are identical with those of D' iakov. Since D' iakov 
[who required for the waves emitted by the dis­
continuity that 0 < cos r.p < 1 instead of relation 
(7 .5)] did not find explicitly the region of spontan­
eous sound emission, there is some discrepancy 
with results of Iordanskii, which disappears when 
the latter are compared with those of Ref. 5, Ior­
danskii explained the discrepancy by the fact that 
the perturbations considered by him were more 
general than perturbations of the surface of dis­
continuity only. It can be easily seen, however, 
that only the perturbations from the region of 
compression which were reflected by the shock 
wave can contribute to the solution (otherwise an 
unstable flow without shock waves would occur). 
If that is the case, however, perturbations can be 
always considered as originating at the shock 
wave, as was indeed assumed by D' iakov. 
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