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We consider the spectral and angular distribution of the energy radiated by an electron moving 
in a magnetoactive plasma, and find the polarization of the radiation. 

l. The problem of radiation of electromagnetic en
ergy by charged particles moving in a magnetic 
field is of considerable interest for some parts of 
astrophysics and radioastronomy. But in most 
papers on this subject, the treatment is limited to 
the case of motion of electrons in vacuum. 1- 3 

The presence of the medium can, under certain 
conditions, strongly influence the character of the 
radiation and, for example, lead to a reduction in 
intensity of the low frequency radiation from dis
crete sources.2•4 

The problem of the radiation from an electron 
moving in a magnetic field in an isotropic medium 
was treated by Tsytovich5 and Razin. 4 However, 
the magnetic field which accelerates the electron 
also causes the medium in which the electron 
moves to become magnetoactive. The anisotropy 
which arises in this way can be large in the case 
of a plasma. Under these conditions we must solve 
the problem of the radiation from an electron mov
ing in a gyrotropic medium. This problem is 
solved in the present paper using the Hamiltonian 
method. 

We should mention that this method was used by 
Ginzburg, 6 and later by Kolomenskii, 7 to determine 
the energy of the radiation from charged particles 
in anisotropic media. 

2. The field equations for a charge e, moving 
along a vortex line in a magnetoactive medium, 
have the following form: 

4'"' , 1 ao curlH = c- evo (r- re) --;--~;-7ft, div H = 0, 
(1) 

div D = 477e~ (r- re), curl E =- +aa~ , 
where the components of the radius vector re and 
the velocity v of the electron along the x, y, z 
axes are, respectively, 

r0 cosD0 t; r0 sinD0 t; v2t 

and - v! sin Q 0 t; V2 cos D0 t; v2 
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(v1 = n0r 0 ). Here it is assumed that the axis of 
the vortex line, which is parallel to the constant 
magnetic field H0, is along the z axis, while 
v 1, v2 are the projections of the electron velocity 
on the xy plane and the z axis. The Fourier 
components of the electric induction Dw and the 
electric field intensity Hw are related by 

D..,= {e"~ (w)} E..,, 

where { Eaf3} is the Hermitian dielectric tensor 

( Eaf3 = Efia ), whose components in the system of 
coordinates which we are using are given on p. 326 
of Ref. 8. According to the Hamiltonian method,6•7 

the vector potential of the radiation field, 

(2) 

can be found by solving the system of oscillator 
equations 

(3) 

In these relations, ajA. is the complex polari
zation vector (the index j = 1, 2 corresponds to 
the two normal waves propagating in the gyrotropic 
plasma). The wave vector kA, is related to the 
f b 2 - k2 2j 2 h . requency WjA. y wjA. - A. c njA.• w ere njA. 1s 
the refractive index. If we introduce the param
eters aj and l3j through the relations 

IXj=Kj cos O+Yi sin 0, ~i=Yi cos 6-Ki sin a, 
iKj = Ee /Ex; iyi = Erj /Ex, (4) 

the polarization vector ajA. of the j -th normal 
mode will have the following components along the 
coordinate axes: 1//2, ia/12; if3//2. The 
orientation of Ex, He, Er is clear from Fig. 1. 

For a magnetoactive plasma, the quantities Kj 
and nj are given by the expressions 
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n~ = I - 2V ( 1 - V) I [2 (I - V) 
I 

K _ -2Vu(l- V)cosfl (5) 
I- [u sin2 fJ + V u2 sin4 fJ + 4u (1- V) 2 cos26] 

On the basis of the definition (4) we can also 
easily co.mpute the parameter Yj: 

- sin 6 V Yu + K iu V cos 6 sin 6 

Yi = 1-u- V (1- u cos2 6) 
(6) 

In formulas (5) and (6) we assume, as usual, that 

V = 4"-eN I mw2 ; Vu = eH0 1 mew, 

where m is the electron mass and N is the elec
tron concentration in the plasma. Using the expres-

.:c 

FIG. 1. Ex ..L H.; Ee, 
Er and kA_ are in the yz 
plane; Ex l. kA_, Ee .L kA_. 

sion for the components of the vector ap~,. and the 
expansion 

00 

exp {- ikJ..r 0 sin & sin 0 0f} 
--00 

( Js is the Bessel function of order s ), we reduce 
Eq. (3) to the following form: 

Here 

Gs (kJ.ro sin fJ) = v1J~ (kJ.ro sin 0) 

+ [k as~1 6 + ~v2]Js(k"r0 sin6), ,r 0 sm 

while J~ is the derivative of the Bessel function 
with respect to its argument. 

In the system of equations (7), those frequencies 
Wjll. which satisfy the relation 

(8) 

give solutions of (7) which increase with time and 
correspond to radiation. The equations for frequen
cies given by (8) are: 

(9) 

The solution of this system for the initial con
ditions t = 0; qjll. = qjll. = 0 is elementary: 

. = _i_ [e-i"'iJ.1 r f (f) ei"'j).t df- ei"'j).t C f (f) e-i'"iJ.t dtJ. 
qJA 2w 'A .\ j 

) 0 0 -

The energy of the oscillator qjll. after time T 
is 

Summing over all oscillators qjll. in the frequency 
interval dwjll. and solid angle dn, we find that 
the energy radiated within this range of frequency 
and angle for the s-th harmonic is given by the 
following expression: 

where 

For T-oo, (10) becomes a o function of the 
argument 

- sQ0 + wiA (I - ~ 2niJ.. cos 6). 

This means that only the Doppler frequency ws, 
defined by the equation 

is responsible for the harmonic n 0s. Using (10) 
it is easy to find the total energy of the radiation 
for the j -th normal mode, as a sum: 

Wi = ~ Wsi· 
-00 

3. We should mention that, according to formula 
(10), radiation is also possible for s = 0 (zeroth 
harmonic). In this case the energy is radiated at 
the Cerenkov angle {), which satisfies the equation: 

I - ~2ni ((u; 01) cos 01 = 0, 

where, for simplicity, we have dropped the sub
scripts on the frequency Wjll.· Carrying out the 
integration over solid angle in (10), we find that 
the radiated energy in the j -th normal mode is 
( s = 0 ): 
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(12) 

If the electron moves uniformly along the z axis ( v1 = 0; r 0 = 0 ), the preceding expression reduces 
to formula (4.5) of Ref. 7 for Cerenkov radiation: 

(13) 

If is necessary to remark that formulas (12) and (13) are invalid for those frequencies for which the 
refractive index nj ( w) - co , since in this case the expression for W oj diverges ( /3j - co like nj). 
In order to eliminate this divergence, we must either take account of collisions in the plasma (which will 
make nj ( w) finite everywhere), or set some limiting value nm for the refractive index nj, if we are 
interested in the total loss from the moving particle. In this case, the limits of the domain of integration 
will be given by the following inequalities (for more details, cf. Ref. 9 ): 

~2nm >- ~2n; (w) >- 1. 

This remark applies to all relations obtained later on, when nj ( w, e) goes to infinity. 
4. For harmonics other than the zeroth, it is more convenient to carry out the integration over w in 

(10). Then the energy radiated, at the frequency Ws defined by (11), in time T into the solid angle d~ 
is 

W. _ Te2w~n;dn{v1J~ (n;"'s' 0 sin 0 I c)+[cxsv1 I 6 ("'s) r 0 sin O+f1v2] J5(n;"'s' 0 sin e;c)} ~ 
1• - 4rcc"l1- ~2 cos 0 (n; + w8 8ni ("'s) 1 8w) i 

(14) 

If we set u = V = 0 ( nj = 1; O!j =±cos e) in (11), (14) and (5), i.e., if we treat the case of motion of the 
electron along a vortex line in vacuum, the amount of energy radiated will be given by the following: 

2 , Te2 (sO,.? dO { 2 [ ,• ( s(j1 sin 0 )]2 l c cos 0- v2 ] 2 J2 ( s~1 sin 8 )} 
Ws=] W;s= 2rcc"(1-p 2 ws0)" 01 J 8 \1-~2 eos0 + sinO 5 ,1-~2 cos0 ' 

i-1 

where {31 = Vt /c. 
If, in (14), we set v2 = 0, which corresponds to motion of the electron in a circle, we get the analog 

of the Schott formula for a gyrotropic medium: 

(15) 

For the energy radiated in vacuum ( nj = 1, aj =±cos e), expression (15) gives the Schott formula ( cf., 
for example, Ref. 10, p. 216 ): 

2 Te2ngs2 

w 8 = ] w js = 2rcc" { coe BJ; (s~l sin fJ) + MJ~2} dQ. 
i=l 

5. Let us now examine the character of the radiation corresponding to high harmonics 

S = (ws I D.0)( I - ~2flj COS fi) ::;> I 

(from now on we omit the subscript s on the frequency Ws). 
Using (11) and (14), we easily get the spectral density of the radiation, which is given by 

w jwdw = 2'"~ 1 a. ( ,."'- ~lni sin 011· p. dwdQ. 
"'" ,><o J I"' 

If there are angles e, within the particular frequency interval, for which f3jnj sin e is of order one, 
the Bessel functions in the preceding expression can be transformed to Airy functions (cf., for example, 
Ref. 10, p. 217). We then find that 

(16) 
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where the Airy function is 

1 co ~3) 
<D (x) = V1t ~ cos ( x~ + 3 d~; 

0 

For motion of the electron in a circle ( v2 = 0 ), we obtain from (16): 

Let us consider our result in a little more de
tail. To do this we give the asymptotic expression 
for the Airy function, whose behavior for positive 
arguments is essentially different from its behavior 
for negative arguments. Thus, if x » 1, 

<D (x) = x-'f, exp {- 2x'lz 1 3}, 

whereas for x < 0; I xI » 1: 

<D (x) = I x 1-'f, sin (fIx l'f, + T). 
From this it follows that the character of the 

angular distribution of the energy radiated at fre
quency w depends mainly on the nature of the 
roots of the equation 

I- ~1n (w,fi) sin 6 = 0. (18) 

For example, for an isotropic medium ( n ( e ) = 
const > 1 ), Eq. (18) has two roots: 

sin 61 = I I ~1n, sin 62 =sin (r.- 01) = I I ~2n. 

In this case the main part of the radiation is at 
angles e satisfying the inequalities 

(19) 

and for these values of e' the directivity pattern 
is multi-lobed, with the main lobes directed at 
angles close to 01 and 02• For values of e out
side the interval defined by (19), the radiation in
tensity drops exponentially as we move away from 
the angles 01 and 02• 

For a gyrotropic plasma, n ( e ) is given by the 
quite complicated expression (5), so that it is con
venient to solve (18) graphically by finding the 
points of intersection of the functions n ( e ) and 
1/{31 sin e. The following two cases are possible 
for the angular distribution of the energy: 

(1) if 

then for 

(20) 

x < 0, while for 

(21) 

x > 0, i.e. the radiation is mainly contained within 

the cone defined by the inequalities (19); 
(2) if 

dn (61) I d6 <-cos 61 I ~1 sin2 61 , 

then the radiation is concentrated at the angles 
corresponding to the inequalities (21). 

Figure 2 shows the graph of the function 

( 200 )'/, { W 1w (6) = n1 (3 . 6 - <D' (x) 
w 1n1 sm · 

+ ai ('cu(31n1sin6)'1, <D(x)}2 = W(6), 
~ 1nism6 200 

defined by (1 7), for the following values of the 
parameters: 

U = 0.25; V = 0.8; ~ 1 = 0.4; wiD0 = 20. 

As we see from the graph, the second case occurs 
here. 
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· of!L___.o2_fi:.,.¢_!i.~o-u.~o ~7fl~7.,..'Z-J.~<l--,75~78~8.~'!!.,..-'-8Z,..-o~4. 

e 
FIG. 2 

We note that expression (17) for the energy Wj 
diverges for nj - oo, since aj tends to infinity 
like nj (in our example this occurs at e = 60°); 
whereas in an isotropic medium, the amount of 
energy radiated, W w• remains finite even for 
n - oo [ cf. the remark concerning divergences 
which we made with respect to forumlas (12) and 
(13)]. 

We now give the approximate value of (17) for 
the case where the given frequency interval con
tains angles e for which 

1 >~1nisin0= I. 

It is easy to see that then x > 0 and ell ( x) has a 
sharp maximum for angles satisfying the relation 

(22) 

If we make use of the approximate equality (22), 
we get the following expression for the energy radi-
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ated during one revolution of the electron: 

W , 1dw ~ (2e2vi I r.c3) ( w I 200)''· nidwdQ {- CD' (x) 

+ ai (w I 2Qo)'i• CD (x)}2, 

x = (2w2 10~)' 1'(1- ~1n1sin 6). 

6. In conclusion, let us consider the case where 

(23) 

It is easy to see that in this case the greatest in
intensity occurs for the zeroth and first harmonics. 
For the zeroth harmonic ( s = 0 ) , the expression 
for the radiated energy, when we satisfy the inequal
ity (23), is identical with the Cerenkov term (13). 
In this connection we note that the picture of the 
radiation of an electron, moving along a vortex line 
in a medium with n > 1, as the radiation from a 
pair of perpendicular oscillating dipoles is incor
rect (since it does not give the Cerenkov effect). 

We now determine the energy corresponding to 
the first harmonic ( s = 1 ) . To do this, we substi
tute in (14) the first terms of the expansion of the 
Bessel function and its derivative. We then find 
that 

Te2win1d!J. [v1 (1 + a1) + ~w1ni'o~2 sin 6)2 24 
W 11 = 16rcc" [1- ~ 2 cos 6 (n1 + w1an1 (wl) I aw)] • ( ) 

From this formula we see that only for motion of 
the electron in an isotropic non-dispersive dielec
tric (n(O,w)=const, aj=±cosO; f3j=±sin0) 
do we get the familiar expression for the energy 
radiated by a pair of mutually perpendicular di
poles oscillating with a phase shift of 1r/2 ( cf., 
for example, Refs.ll, 12): 

where p~ = e2r~ is the dipole moment. 
If the electron moves in a circle, (24) becomes 

the following simple expression: 

Wli = (Te2Q~~in1dQjl6r.c) (1 + a1)2 . (25) 

From (25) it is easy to determine the ratio of 

the energy radiated in the extraordinary wave to 
the energy of the ordinary wave: 

Wn/W12 = nl (I+ a1)2/ n2 (1 + a2)2. 

The author is grateful to Prof. V. L. Ginzburg 
for discussion of the results, and to V. V. Zhelez
niakov for checking the manuscript. The computa
tions needed for the construction of the graph in 
Fig. 2 were done by G. A. Semenova. 
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