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to include {31 and {32 in order to prove that 

c+ (ms) C (ms) + ~, C'+ (ms') C' (ms') = I. 
k', m8 , 

The differential cross section for elastic scattering is 

(8) 

If the incident Dirac particle is directed along the z axis ( cos e = 1), the scattering amplitude is given 
by 

The total effective elastic scattering cross section is 

1 A. A. Sokolov and B. K. Kerimov, Nuovo cimento 5, 921 (1957). 

Translated by E. J. Saletan 
17 

(9) 

when ms' = - ms. 

(10) 
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Transition from the superconducting state to the normal and vice versa in the presence of an 
external magnetic field is considered. Critical magnetic field strengths He, H01 and H02 , 

which correspond to equilibrium transition and to the boundaries of the supercooled and super­
heated regions respectively, are computed. Cases of small samples and of bulk metals are 
considered. 

THE destruction and the onset of superconductivity 
in the presence of an external magnetic field pro­
ceed in entirely different ways, depending on the 
dimensions, shape and internal condition of the 

sample ( its purity, its homogeneity, etc. ) . In the 
simplest case of a bulk sample of cylindrical shape 
subjected to a field parallel to the axis of the cyl­
inder, assuming that no intermediate state occurs, 
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the equilibrium transition from the superconducting 
to the normal state (and vice versa) takes place 
in a field given by 

Hcb = V81t (Fno- fso), 

Here F no and F so are the free energy densities 
of the normal and superconducting phases. (The 
change of volume associated with the transition is 
neglected here and throughout the paper.) 

Experimentally, however, supercooling of the 
normal phase can occur and in fact, is often ob­
served, so that its transition to the superconduct­
ing phase occurs in fields H1 < Hcb· Similarly, it 
is also found that the superconducting phase can 
experience a superheating, in which case it returns 
to the normal phase only for H2 > Hcb· The values 
of H1 and H2 can not be calculated. They depend 
on many factors and, generally speaking, differ 
from experiment to experiment. Nevertheless, as 
was shown in previous work, 1•2 there exist certain 
critical fields, Hc1 and Hc2, which serve as boun­
daries of the supercooling and superheating regions, 
such that H1 :::::: Hc1 and H2 =::: Hc2 always. Thus 
the quantities Hc1 and Hc2 determine the maxi­
mum extent of the hysteresis loop, and their calcu­
lation is obviously of interest, especially since in 
certain cases Hc1 has been reached experimen­
tally .2 

In small samples, i.e., when the smallest char­
acteristic dimension of the sample, L, is com­
mensurate with the penetration depth of a weak 
magnetic field into the metal (we shall denote this 
penetration depth by o0 ), the supercooling and 
superheating, generally speaking, are even more 
strongly pronounced than in the bulk metal. This 
is apparently due to the difficulty of producing suf­
ficiently small nuclei. Indeed, in accordance with 
Ref. 1, the boundary between the normal and super­
conducting phases in bulk becomes blurred and has 
a width of the order of o0/K. For pure supercon-

ductors, K ~ 0.1 and, thus, it should be difficult 
to form nuclei in samples of dimensions on the 
order of o0/K ~ 10o0 ~ 10-4 em.* 

The circumstances noted above also hinder the 
formation of an intermediate state in small sam­
ples, to say nothing of the fact, that in this case, 
because of the increase of the surface energy den­
sity, stratification of the sample would become less 
advantageous even if the boundary between the 

*Here we assume (as is usually done) that far from the 
critical temperature, T c• 00 "' 10-5 ern (near T c the values of 
o0 and of o0 / x are still larger). For samples with dimensions 
L < o0 / x, the formation of a transition region between phases 
is still possible in principle, but involves an increase in the 
corresponding surface energy. 

phases were sharp. Because of this, one naturally 
expects more pronounced hysteresis in samples of 
small dimensions, and in such samples the attain­
ment of the corresponding critical values Hc1 and 
Hc2 should be relatively easy. On the other hand, 
for very small samples, smaller than a certain 
dimension, Lc ~ o0, which depends on the shape 
of the sample, the transition from the supercon­
ducting state to the normal state ( and vice versa) 
is a second order transition1 and, consequently, 
superheating and supercooling are impossible (in 
other words, in this case Hc1 = Hc2 = He, where 
He is the critical field for the equilibrium transi­
tion). Hence, it is clear that supercooling and 
superheating are pronounced only in some "aver­
age" domain of sample sizes. 

Various aspects of this problem have already 
been considered in the literature.1- 7 However, 
because of the publication of some new results 8 of 
an investigation of the destruction of superconduc­
tivity in cadmium, this series of questions has 
again attracted attention. The corresponding re­
sults, which relate to the values of Hc11 Hc2 and 
He in different cases, will be presented below. 

1. Let us first write down the general thermo­
dynamic relations for superconductors. The free 
energy density of a superconductor, according to 
Ref. 1, is given by 

(1.1) 

F so = F no + a; I w 12 + t I 'Yr. (1.2) 

where F no ( T) is the free energy in the normal 
state in the absence of the magnetic field H; the 
function '11 plays the role of the parameter TJ, 
which enters into the theory of second-order phase 
transitions, and a, {3, and M are certain coeffi­
cients. It is possible, in principle, to use here an 
expression different from Eq. (1.2) to represent 
Fs0 ( lwl2 ), but for definiteness, we shall use only 
the expression shown above, bearing in mind cer­
tain statements made in Refs. 9 and 10. 

From the condition that the total free energy 
must be a minimum, these equations result: 

(1.3) 

-curl curl A= .:lA =- ~j8 , 
c 

• - - ie1i_ ('Y*V'Y - 'YV'Y*) - .!!___A I 'Y 12 
Js- 2M Me ' (1.4) 

where it is assumed that divA= 0. 
In considering a superconductor in a uniform 

external field, H0, the role of the thermodynamic 
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potential which has a minimum at equilibrium is 

not played by jF sHdV, but rather by another 

quantity, which we shall call <I> ( T, H0 ) • This dif­
ference, which is immaterial from the standpoint 

of deriving Eqs. (1.3) and (1.4), is related to the ex­
istence of an "energy of interaction" between the 
magnetic moment of the superconductor and the 
external magnetic field. The expression for <I> 
can be obtained by means of an analogy with the 
theory of magnetic materials, where that part of 
<I> which is a function of H0, is determined by the 

expression - jMdH0dV (here M is the magneti­

zation). If M = const x H, then it follows that 

(1.5) 

where p. = jMdV is the magnetic moment of the 
solid. 

The derivation given above is not sufficiently 
rigorous, but we also arrive at Eq. (1.5) by taking 
it into account that during an isothermal process 
at equilibrium in a magnetic field, the following 
quantity must have a minimum: 5 

(1.6) 

where E is the internal energy of the solid, S is 
its entropy, and the term containing H~ is added 
for convenience. In the case of a superconductor: 

E - T S = ~ F dV = ~ F sH dV, 

where F sH is defined by Eq. (1.1). 
In most cases the function >l1 can be considered 

real. Indeed, in transforming to gradients, it is 
necessary that 

'¥' = o/exp[ifcx(r)], A'= A+ Vx, 

where the only requirements on X ( r ) are that the 
function >l1" remain everywhere continuous and 
single valued. For. a simply connected supercon­
ductor, this condition can be satisfied everywhere 
and at the same time one can choose X so that the 
function >l1" turns out to be real. 

In this case, as is evident from Eq. (1.4), if 
>l1 = >l1 * ( the primes on >l1 are omitted) , 

(1. 7) 

For a bulk, multiply-connected superconductor it 
is possible to choose >l1 real only if the magnetic 
flux through any contour located in the interior of 
the superconductor is equal to zero. Indeed, in the 
interior of the superconductor the current density 

is js = 0, but on the other hand, under condition 
(1. 7), the circulation of the current on such a con­
tour is given by 

~ j.ds = canst· ~A.ds =canst· ~H ndcr, 

i.e., it is proportional to the magnetic flux through 
the contour. Therefore, if this flux is different 
from zero, Eq. (1. 7) cannot be true. The magnetic 
flux through a superconductor does not vanish, as 
is well known, only for multiply-connected samples 
which are transformed into the superconducting 
state in the presence of a magnetic field. This case 
will not be considered below, and Eq. (1. 7) will be 
used when we have for the superconductor [see 
Eq. (1.6)] 

<Ps (T, Ho) = ~ [Fso + 2'% (v'¥)2] dV 

- fc ~ j.AdV + ~ ~ (H- H0) 2dV, 
(1.8) 

where, as before, the integration is performed over 
all space. (Outside the superconductor, naturally, 
>l1 = 0 and Js = 0; in Eq. (1.6), in addition, the sub­
stitution B = H was made since the metal is con­
sidered to be non-magnetic.) 

In the normal state, since the metal is non-mag­
netic, 

<P n (T, H o) = ~ F no dV. (1.9) 

Eq. (1.8) can be transformed into the form of Eq. 
(1.5) by using the field equations. 

The function >l1 which enters into <I>s is deter­
mined in the equilibrium or metastable state by the 
condition that <I>s must have a minimum. As has 
been pointed out, this condition is the same as the 

requirement of a minimum in jF sHdV = E - TS, 

i.e., it is determined by means of Eq. (1.3). The 
equivalence of the expression for <I>s and E - TS 
in this respect is evident from Eq. (1.6), since the 
presence of the term 

- ~~ ~ H dV =- ~~ ~curlAdV 

is immaterial when >l1 and A are varied for the 
purpose of obtaining Eqs. (1.3) and (1.4). In this 
case, in the absence of a field, when one can write 
A = 0 and V'>l' = 0, we have 

For a bulky cylindrical superconductor in a 
field, parallel to the axis of the cylinder, one can 
assume the field to be H0 outside the metal and by 
H = 0 in the interior of the sample. Therefore 
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t£ = Ire~ (H- H0 ) dV = - ~~ , 
where V is the volume of the cylinder. The term 
with ( V'..Y) 2 in Eq. (1.5), which differs from zero 
only near the surface of the metal,* can be neg­
lected in our case and, in this way, in the equili­
brium state, when the external field H0 is equal 
to the critical field Reb for bulk metal, we have 

(1.11) 

Let us introduce the notation 

(1.12) 

Here we have taken it into account that o0 ( the 
depth of penetration of a weak magnetic field into a 
superconductor) is the observable quantity, while 
the "concentration of superconducting electrons", 
ns = -.v2oo manifests itself through o~. Therefore, 
in the expression for o~, the coefficient M, which 
plays the role of an effective mass, can be set 
equal to the mass of the free electron m, thus 
uniquely relating -.v200 with o~. As for the charge 
e, it is assumed above to equal the free electron 
charge, an assumption having rather firm theoreti­
cal foundations. 1•11 Making use of Eqs. (1.12) and 
(1.9), the potential (1,5) can be written in the form: 

H~b (' . 4 2 2a~ 1 
<I>s = <I>n + -8~ \ ['¥0 - 2'¥0 +.......- (V'P'o) 2] dV- 2 t£Ho. 

~ J K 

(1.13) 
From (1.13) it is clear that only two parameters, 
Reb and o0, enter into the theory [the parameter 
K can be expressed in terms of these other two; 
see Eq. (1.12)], so that only the penetration depth 
o0 enters into the gradient term. 

In terms of these same symbols and for a real 
..Y, Eqs. (1.3) and (1.4) can be rewritten 

(1.14) 

curl curl A+ o~2'¥~ A = 0. 

Note, finally, that the temperature dependence of 
a and {3, .or, equivalently, of the quantities. Reb 
and. o0, is not fixed, and can be arbitrary within 
wide limits. From experimental data, it is known 
that quite good agreement with experiments can be 
usually achieved by putting 

Hcb=H00 [1-(TjTc) 2 ], Oo=Ooo[l-(T/Tc)4r'/,_ (1.15) 

*It is assumed that all of the sample becomes supercon­
ducting. 

2. For a number of pure metals K « 1 (e.g., 
for aluminum at T -- 0, according to Ref. 9, K 

0.05 ). Under such conditions, for certain problems, 
we can simply let K = 0, which is the same as as­
suming the ..Y does not depend on the coordinates 
[ see Eq. (1.14)] . One can proceed exactly in the 
same manner in analyzing the destruction of super­
conductivity in small samples, when 

(2.1) 

where L is the characteristic dimension of the 
sample ( the thickness of a film, the radius of a 
small sphere or a cylinder, etc.). Let us first 
dwell on this particular case. 

According to Eq. (1.13) we have here 

f= (2.2) 

where .V is the volume of the sample. 
Since in the superconducting state, whether in 

equilibrium or in a metastable state, the potential 
<Ps (or the potential difference f) should have a 
minimum, the quantities H0 and ..Yo are related 
by the equation: 

(2.3) 

where for simplicity the value of ..Y0, associated 
with the minimum, is represented by the same 
symbol, ..Y0• 

The equilibrium transition between the super­
conducting and normal phases occurs if 

(2.4) 

where He and ..Yc are corresponding values of 
H0 and ..Y0• The second equation needed to deter­
mine He and ..Yc is clearly Eq. (2.3) with H0 = 

He and ..Yo = ..Yc· 
If the characteristic dimension L is less than 

a certain value Lc, then with increasing H0 the 
function ..Y0 decreases monotonically and ..Yc = 0. 
In this region there occurs, as is evident, a second­
order transition, when neither superheating or 
supercooling is possible. This is clearly seen in 
Fig. 1, in which we have plotted the potential dif­
ference f as a function of ..Yo for various values 
of ( Ho/Hcb )2 for small spheres of radius a = o0 
[see Eqs. (2.19), (2.23) and (2.25) below]. 

The value L = Lc corresponds to the critical 
Curie point, when the specific-heat discontinuity is 
infinite at the transition. For L > Lc, a first­
order transition takes place. Plots of f ( ..Y0 ) for 
this case are presented in Fig. 2 for small spheres 
with a/o0 = 8. It is already evident from this fig-
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FIG. 1. Curves 1 
through 5 correspond 
to values of (H0/Hc~/ 
equal to 5, 10, 15, 20, 
and 30, respectively. -1!2 

-04 

-U,(j 

ure, that the metastable ( supercooled) normal 
phase, which accounts for the relative minimum in 
f at l¥0 = 0, can exist only in fields H0 > Ret• 
The value of Ret is obtained from the condition 

a2t (Hcl ,0) ;a'¥~ (a2t I a'Y~)H,~Hcl''Y,~o= 0. (2.5) 

As for the metastable (superheated) supercon­
ducting phase, it can exist only for fields H0 < Hc2, 
where for 'llc2 ~ 0: 

a2f (Hc:JZ, '¥c2) I a'¥~= 0, at (Hc2 ,'¥c2) I a'¥0 = 0. (2.6) 

In this case, when l¥0 = canst., t;p.e magnetic 
moment of the sample is calculated in the same 
way as in the Londons' theory [see the second of 
Eqs. (1.14) ]. The solutions of the corresponding 
problems are presented in detail in Ref. 12. For 
a field parallel to a thin film of thickness 2d 

(2. 7) 

For a sphere of radius a: 

(2.8) 

For a circular cylinder with radius r in a field 
parallel to its axis, 

_ll:_ _ ___!::__ __ [! _ 280 11 ('Y0rj80)] H0 

V - 1tr 2l- 'Y0r 10 ('Y0rj80) 47t 

!2 ('Yor/8o) Ho (2,9) 
l 0 ('Y0r/80 ) 47t' 

where In ( x) = i -nJn ( ix) and Jn is the Bessel 
function. For the case of a circular cylinder per­
pendicular to the field, the value of 11-/V is twice 
as large as that given in Eq. (2.9). 

For a film, the quantity f assumes a form that 
is clear from Eqs. (2.2) and (2. 7), and Eqs. (2.3) 
and (2.4) yield* 

*The case of a thin film was previously considered in 
Ref. 3, where, however, the expression for the field H 02 

was not included. 

( H0 )2 4'Y~('Y~-1)cosh2 ('Y0d/80 ) 
H cb = t- sinh(2'Y0dj80)! (2'Y0d 1 80); 

(2.10) 

(2.11) 

Using the first relation in (2.6) we find: 

(2.12) 
The second equation for He and 'lie or Hc2 

and 'llc2 is obtained, as has already been remarked, 
from Eq. (2.10) by replacing H0 and l¥0 with He 
and 'lie or with Hc2 and l¥c2. The value of the 
field Ret determined from Eq. (2.5) is equivalent 
to Eq. (2.12) with 'llc2 - 0. This same result is 
obtained directly from Eqs. (2.10) and (2.11) also 

for l¥0 - 0, i.e., by expanding into a series in 
terms of ll!0d/60• The result is: 

(2.13) 

For d < de, where de is the half thickness asso­
ciated with the Curie point ( in this case Lc = 2dc), 
we have Ret = H i.e., Eq. (2.13) also determines 
the critical field in the region of a second-order 
transition. 

From Eq. (2.10), for small l¥0, as a result of 
expanding the hyperbolic functions into a series 
and retaining terms of the order of ( ll!0d/60 ),* 
we obtain 

'¥2 = 1-1/, (H0/Hcb)2 (dli3 0 ) 2 

0 1- (d/(Jo)2 + 11so (Ho;Hcb) 2 (d;8o)4 

1- 1 /s (H0 !Hcb)2 (d/80 ) 2 

1 - 415 (d(So)2 
(2.14) 

Hence for l¥0 - 0, one necessarily obtains Eq. 
(2.13), but, in addition to this, it is clear that the 
form of the solution is changed for different values 
of d/6o. Thus, if d/6o < /5/2 then for H0 > Ret 
no real solution for l¥0 exists in general. On the 
other hand, when d/60 > .f5 /2, such a solution 
does exist. This denotes the presence of a first­
order transition. Thus, for a film 

(2.15) 

The character of the l¥0 ( H0 ) curves is shown in 
Fig. 3, as a function of different sample dimensions, 
for the case of small spheres ( see below). For 

*The author wishes to express his thanks for performing 
the numerical calculations to T. I. Bachelis, E. I. Gusev, 
L. V. Pariiskaia and F. I Strizhevskii. 
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sufficiently thick films, when 

FIG. 2. Curves 1 
through 5 correspond 
to values of (H0/Hch) 2 

equal to 0.25, 0.75, 
1.25, 2.00, and 3.00, 
respectively. 

(2.16) 

and ..Y0 is of the order of unity, Eqs. (2.11) and 
(2.12) are greatly simplified. They assume the 
form 

(2.17) 

(2.18) 

'¥c2 =vi= 0.772. 

Eq. (2.13) for Ret I Reb remains valid also when 
condition (2.16) is satisfied. 

For small spheres we have (xi= ..Yia/60 ): 

f = '¥~ CF~- 2) + _3_ ( ~)2 [1 ~ 3cothXo + ~]; (2,19) 
2 ~~ ~ ~ 

8 2 0 • 2 f sinh 2x0 2sinh2 X0]--1 • 
= g '¥0(1- '¥0)smh Xo l1-r ~- T • (2,20) 

(2.23) 

For small -w0, it follows from Eq, (2.21) that 

2 1- lf2o (H~!H cb)2 (a/8o}2 
':P'o = 1- 4/21 (a/80)2 ' (2.24) 

Y-;; 

1.0 r---=1!!5~--­

f/.8 

f/.5 

0,/1 

0,2 
2 

Q !.0 Z.O (J.O 4.0 lf,/Hcb 

FIG. 3. Curve 1- a/80 = 1.00; 2- a/80 = 2.29; 3- a/80 

= 8.00. 

whence we obtain Eq. (2.23), as well as the critical 
value of the radius, a0 , associated with the onset 
of first-order transitions (for a> aK): 

(2.25) 

For 

(2.26) 

we obtain 

Hc/Hcb = V2/ 3 (1 + 3o~j2a), '¥ c = 1- 3a0/8a; (2.27) 

Hc2/Hcb= 4/s·15-'14Yafoo=0.407~, '¥c2 =Y3/ 5 • 

(2.28) 

The values of Hct/Hcb• He/Reb and Hc2/Hcb. 
obtained from Eqs. (2.20) through (2.23), are shown 
in Fig. 4. In exactly the same way as was done for 

VI 2J1 3.0 40 1.0 ~0 7.1 ttU tU ffl/} 
"c/Do a/6.0 

FIG. 4. Curve 1 - He 1/Hchi 2 - H c/H chi 3 - H c2/Hch· 

the film and the small sphere, it is possible to de­
termine the fields Ret. He and H02 for a cylin­
der by using Eqs. (2.2) through (2.9). It is espe­
cially easy to show by expanding the function In 
in Eq. (2.9) in a series, that for a cylinder, in a 
parallel field 

(2.2 9) 

and for a cylinder, with a perpendicular field 

(2.30) 

Equations (2.20), (2.23), (2.25), (2.29) and (2.30) 
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were previously obtained by Silin, 5 but in a some­
what more cumbersome way [this was because he 
did not make use of the general expression Eq. 
(1.13)]. The case of small spheres was also inves­
tigated in Ref. 4, but with the use of a different, 
more complicated, and at the same time, apparently 
less justifiable functional relation between F so 
and >¥2• The results obtained, concerning the de­
pendence of Hch He and H02 on the dimensions 
of the samples at least in their qualitative relations, 
are confirmed by experiments (see Refs.13 through 
16, 4, and 10). 

3. If one makes use of the equations obtained in 
Sec. 2, one can conclude, that as L/60 increases, 
the field Hct approaches zero, and the field H02 

approaches infinity [see Eqs. (2.13) and (2.18) or 
(2.23) and (2.28)]. In actuality, however, all these 
expressions are strictly applicable only subject to 
condition (2.1), which does not permit consideration 
of sufficiently thick samples. By taking into account 
the parameter K, the values of the fields Hch He 
and H02 are changed, and, for example, for thin 
films, one obtains 7 to terms in K2 

(3.1) 

Hence, it follows that Eq. (2,13) can be used in 
practice, as long as Kd/60 ~ 1 or, if K "'0.1, as 
long as d/60 ~ 10. Since 60 ~ 5 x 10-6 em, this 
means that the thickness of the film 2d can reach 
10-4 em or even somewhat more (except near T0 , 

where 60 increases.) 
A general investigation of the critical field val­

ues in the region KL/60 ,..., 1 is rather complicated, 
and we shall therefore dwell only on the second lim­
iting case, when 

(3.2) 

Since the width of the transition region between the 
superconducting and normal phases at equilibrium 
(i.e., for H = Hcb) is of the order of 60/K (see 
Ref. 1. ), condition (3,2) has an obvious physical 
meaning. Samples whose smallest dimensions L 
satisfy the inequality (3.2) will behave like bulk 
samples. For such samples, the boundary of the 
region of supercooling of the normal phase is de­
termined from the condition of stability of this 
phase with respect to a transition into the super­
conducting state.t• 2 Thus 

(3.3) 

In external fields such that H0 < Ret the normal 
phase is unstable and cannot exist. 

By comparing (3.3) with (2,13), (2,23), (2.29), 
and (2.30), which are valid in the second limiting 

case (2.1), the following becomes clear. As L in­
creases, Ret first decreases as Hct/Hcb = 
const. x 60/L, but afterwards, when KL/60 » 1, 
this decrease slows down and for the field Hch 
probably approaches monotonically the constant 
limit (3.3). 

As regards the equilibrium critical field He, 
it approaches Hcb for cylindrical samples with 
axes parallel to the field, when condition (3.2) ap­
plies. For a slab of thickness 2d » 60/K we 
havet,a 

Hc/Hcb = 1 + (o0/2d) (1 + x/8 V2). (3,4) 

The limit of the superheated region of the super­
conducting phase, i.e., the field H02 , increases in 
certain ranges of values of L according to the law 
H02/Hcb = const -../L/60 [see Eqs. (2,18) and (2,28)]. 
For KL/60 ,..., 1, this increase slows down and when 
condition (3,2) applies, the field H02 , most prob­
ably, approaches smoothly a certain constant limit, 
which is a function of K, 

We now proceed to calculate Hc2 for the bulk 
metal, considering for this purpose the supercon­
ducting half-space, on whose boundary ( at z = 0) 
the external magnetic field, parallel to this boun­
dary, is equal to H0• The problem is one dimen­
sional and Eqs. (1.14) become 

d2'¥0/d'; 2 = x 2 [-- (1- a 2 ) '¥0 + 'P'g], (3,5) 

d2ajd~2 = 'Y~a, (3,6) 

where 

h = dafd~ = HfV'i Hcb· (3.7) 

Equations (3.5) and (3.6) must be solved subject to 
the boundary conditions1 

~ = oo: '¥~ = 1, d'¥0/d2 = 0, h = 0, a= 0, 
~ = 0: h = (dafd~)0 = h0 , d'¥0/d~ = 0, 

(3.8) 

where h0 = H0 I ..f2 Hcb is the field on the boundary 
in the new units, and the value ~ = oo corresponds 
to a layer of superconductor. 

From Eqs. (3.5), (3.6), and (3.8), it follows that 

(dafd~) 2 h2 = 1f2--:~( ~~oy- (1-az) '¥~ +ro/2. 
(3.9) 

Making use of the integral of Eq. (3.9), and de­
noting d>¥0/d~ by y, we can write Eqs. (3.5) and 
(3.6) as 

d'¥ nfda = y (1/ 2- (y/x)2 - (1- a 2) '¥g + '¥~/2]-''', 
dyfda = x 2 [ -(1- a 2) 'Y0+ '¥g] [1/ 2 - (y/x)2 - ( 1 - a 2 ) '¥~ 

+ '¥t/2]-'12• (3.10) 
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The problem consists of finding an integration 
curve, which satisfies (3.10), goes out from the 
singular point y = 0, a = 0, -.Jt0 = 1, and inter­
sects the plane y = 0 ( in a coordinate system 
with variables y, a and -.Jt0 ) at the point a0 and 
-.Jt0 ( 0 ), so that in accordance with (3.9) 

h~ = 112- (1- a~) '¥~(0) + ro(O)I2. (3.11) 

For a given applied field, h0, Eq. (3.11) deter­
mines a certain curve in the plane y = 0. Near the 
singular point one can write -.Jt = 1 + cp, where 
lcp I « 1, and, thus, the equation can be made lin­
ear. Consequently, near the singular point, 

)v2x 
'¥0 =1+x2a212(2-x2)+C(-a , 

y =- x2a21(2- x2) -- V2xC(- a{2 ", 

where C is an integration constant. 

(3.12) 

The behavior of the integral curves at suffi­
ciently large values of I a I is determined from 
Eq. (3.10) and, generally speaking, can be calcu­
lated quantitatively only by numerical methods. In 
the case of small K, it turns out that it is more 
effective to get a direct solution of Eqs. (3.5) and 
(3.6), using, for large values of ~. a solution 
equivalent to (3.12), obtained by the method of suc­
cessive approximations.1 As a result of such cal­
culations, one can establish that the sought solution 
exists only so long as the field h0 is less than a 
certain field hc2 = Hc2 I ..f2 Hcb• which plays the 
role of the boundary for superheating of the super­
conducting phase. Incidentally, the very fact that 
the field Hc2 exists can be ascertained, naturally, 
even without numerical calculations. Thus, in the 
limiting case of very large K, Hc2 = Hcb· In fact, 
as K - oo, we have from Eqs. (3.5) and (3.6) 

'¥~ = 1- a2 , a= V21cosh(~ +C), 

h = da 1 d~ = V2 sinh(~ + C) I cosh2 (~ + C), (3.13) 

HI Hcb = V2 h = 2 sinh(~+ C) lcosh2 (~ +C), 

where C is an integration constant, and we have 
taken into account the boundary condition a ( ~ = oo) 
= 0. From the requirement, that H = H0 when 
~ = 0 (i.e., z = 0 ), the following condition is ob­
tained: 

cosh2 c = 2 (HcbiHo) 2 + 2 V(Hcb/Ho)4 - (Hcb/Ho)2 • 

Hence the possible existence of a solution only when 
H0 :s Hcb is evident, since otherwise cosh2 C be­
comes complex. Thus, when K - 00, Hc2 = Hcb· 
For K = 0, on the other hand, the field Hc2 = oo, 
since the solution -.Jt0 = 1 exists in any field. For 
K « 1, by using the method of successive approxi­
mations, 1 one can show, that on the boundary z = 0 

the function -.Jt0 ( 0) is equal to 

2 v- 2 '¥0 (0) = 1- xh0 1 2 2 --9 (xh0) 2 I 16- · · · (3.14) 

Hence, it is evident, that the expansion variable is 
the quantity Kh~, and Eq. (3.14) is valid so long as 
1 - -.Jt0 ( 0) « 1. For this last reason, the absence 
of a maximum in the curve of Eq. (3.14) at -.Jt0 ( 0, h), 
corresponding to the field hc2, means that the 
value -.Jt0 ( 0, hc2) = '1tc2 is substantially different 
from unity. 

On the other hand, for '110 (0)- 0, as can be 
seen from Eq. (3.9), h0 - 1/-12 and, thus, the 
curve of -.Jt0 ( 0, h0 ) must have a maximum. From 
Eq. (3.14), and from an analysis of Eqs. (3.5) and 
(3.6) with the introduction of the variables l; = ..fi{[, 
X = -.Jt 1-fK and b = -fK a, it can be inferred that, 
for -fK « 1 and h02 = const/-fK , i.e., 

HcziHcb = V2 hc2 = 0.89/V;;- (3.15) 

where the constant was obtained by numerical inte­
gration of the equations, with K = 0.02, for 
Hc2 /Hcb = 6.28 and '1tc2 = 0. 73. 

By way of example, '110 ( 0, h0 ) has been plotted 
for K = 0.165 in Fig. 5. The values of Hc2/Hcb• 

'Yo 

(1/r---------

IN FIG. 5 

u 0.5 ;;u llo/llcb 

obtained by means of numerical calculation, are 
shown in Fig. 6. We also tabulate the values of 
Hc2 /Hcb and -.Jt20 for some values of K, as fol­
lows. 

){ = 0.10 
Hc2/Hcb = 2.87 

'f"c2 = 0. 72 

0.165 
2.25 
0.67 

0.4 0.5 
1. 64 1.52 
0.65 0.63 

0.6 
1.45 
0.62 

0.7 
1,39 
0.615 

0,8 
1.34 
0.61 

Experimentally it is difficult to observe super­
heating of the superconducting phase in bulk sam­
ples, but for samples of "average" dimensions (see 
the introduction) one can expect a different situa­
tion. Therefore, in particular, the thought arises 
that Hein and Steele observed not the equilibrium 
value of He for small superconducting cadmium 
spheres, but rather some value H2 lying in the in­
terval H0 < H2 < H02. Indeed, by considering the 
transition to be an equilibrium one, in the value ob­
tained in Ref. 8, 600 = 8.8 x 10-4 cm, was two 
orders of magnitude larger than the quantity 600 

in Sn, Al, and other superconductors. Hence, as 
T- 0, if Hcb = 27 .6, we obtain Ko = 2.16 x 
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107 Hcbo50 ~ 460, which seem unlikely ( Ko = 0.17 
for Sn and Ko = 0.05 for Al ). Recent measure­
ments by Chaikin* on Cd confirm directly the in­
correctness of the conclusion drawn by Hein and 
Steele, since Chaikin's data lead to 600 = ( 10.2 to 
11.5) x 10-6 and Ko = 0.07. In this connection it 
seems natural to assume that superheating was 
observed in Ref. 8, especially since only the de­
struction of superconductivity in a given field with 
increasing temperature was investigated. Even 
for the smallest spheres, like those investigated 
in Ref. 8, the condition K0a/ 600 » 1 is satisfied. 
Making use, therefore, of Eq. (3.15) or of the data 
presented in Fig. 6, we obtaint H02 /Reb ~ 2.3 at 
T = 0 whereas experimentally H2 /Reb ~ 2. How-

i---· 
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l 

\ I 
\ ! I 

"-..... r--

4 
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2 

1 

0 0.2 9.4 fl{j 0.8 1.0 1.2 1.4 
X 

FIG. 6 

ever, in Ref. 8, the field H2 /Reb increased with 
increasing temperature by nearly a factor of four, 
whereas 

x (T) = "o [1 + (T/Tc)2P, (3.16) 

i.e., the field Hc2 /Reb increases only by approxi­
mately a factor of 1.4. On the other hand, for tem­
peratures attained near T C• the parameter Ka/6 0 

equals approximately 3 or 4, i.e., it is not large 
enough to make use of the values Hc2 obtained for 
the superconducting half-space. 

Thus, the assumption of superheating still can­
not be considered as contradicting the theory. In 
view of all this, further investigation of the prob­
lem of the boundary regions of superheating and 

*The work was reported at the Fourth All-Union Confer­
ence on Low-Temperature Physics (July, 1957). 

t Since the field on the surface of the sphere reaches % 
of its value at infinity, the quantity H c2 for the sphere is 
taken to be smaller by a factor of ',!, than was calculated .. 
above for a superconductor with a plane interface. 

supercooling, in particular in samples of "average" 
dimensions, is of interest. 

Note added in proof (December 19, 1957 ). 
In November, 1957, we received in Moscow the 
manuscript of the detailed work of Bardeen, Cooper, 
and Schrieffer (henceforth BCS) in which a micro­
scopic theory of superconductivity is formulated. 
It is shown that the London equation, generally 
speaking, does not hold even in a weak field, and 
the current is connected with the field in an inte­
gral way, as was already proposed by Pippard 
earlier. However, in the vicinity of Tc, subject 
to the condition ~ 0 I o0 ( T ) ~ 1, the London equa­
tion, is still good to within an accuracy of not less 
than 10 or 15%, which is about the accuracy claimed 
by the BCS theory in its simplest version. The 
parameter is ~ 0 = 0.18tiv0 /kTc, where v0 is the 
velocity at the Fermi surface. For tin, ~ 0 = 2.5 x 
10-5 em, and the London equation can be used in a 
region of about 0.1 to 0.15° near Tc (this conclu­
sion pertains directly only to bulk metals, but prob­
ably has a more general significance). 

In the paper above, we have leaned on the work 
of Ref. 1 which transforms to the London theory in 
weak fields H « H0 • In view of what has been said, 
that work, and the results obtained on the basis 
thereof, can be quantitatively true only near T c. 
as was assumed in Ref. 1, albeit for different rea­
sons. In the general case, as one may believe and 
as is indicated at the end of the BCS article, the 
theory of Ref. 1 and its general conclusions prob­
ably retain a certain significance, but on the whole 
this question remains open. 
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Expressions are derived for the drift velocity of ions of isotopes in a mixture of isotopes. The 
principal interaction between the ions and atoms is assumed to be pure charge exchange. 

IN connection with the problem of the distribution 
of isotopes in a direct current discharge, the ques­
tion of the mobility of an ion of an isotope in an 
isotopic mixture becomes of interest. In view of 
the possibility of charge exchange between an ion 
of one isotope and an atom of another isotope, 
Blank's rule for the mobility of ions in a mixture 
is not applicable in the given case. 

Let there be a mixture of two isotopes with con­
centrations of neutral atoms N1 and N2• We shall 
denote the Maxwellian velocity distributions of the 
atoms by n1 ( v) and n2 ( v). Let the concentra­
tion of ions be Nt and Nt and their velocity dis­
tribution functions be f1 ( v) and f2 ( v). As is 
usual in problems on mobility, we shall disregard 
the effect of the ions on the velocity distribution 
function of the atoms and the interaction of the ions 
among themselves. The chief process of interac­
tion between the ions and atoms is, in the given 
case, the exchange of charge without an exchange 
of momentum ( pure charge exchange model ) , for 
which the charge-exchange cross section q ( u) 
can be considered the same in all four processes 
A+ A, A +B, B+B and B+ A. In the presence of a 
constant homogeneous electric field E, directed 
along the z axis, the velocity distribution function 
for the ions is found from a system of two kinetic 

equations, the first of which has the form 

~!, Nt ~~'; = N ,Nt ~ uq (u) [n1 (v) f 1 (v')- f 1 (v) n1 (v')] dv' 

+ N,Ni ~ uq (u) n,(v) f 2 (v') dv' 

- Nt N2 ~ uq (u) f 1 (v) n2 (v') dv', (1) 

where M1 is the mass of an atom of the first iso­
tope and u = I v - v' 1. The second and third terms 
on the right describe the appearance of A ions as 
a result of impacts of the type B+ A and their dis­
appearance upon impacts of the type A +B. The 

second kinetic equation is obtained from Eq. (1) by 
an interchange of indices. 

Let us solve the system of kinetic equations in 
the limiting cases of weak and strong fields. For 
small fields, when the energy acquired by an ion 
over a mean free path is much less than the ther­
mal energy, we apply the method of Langevin, who 
assumes the velocity distribution of the ions to be 
Maxwellian with a small superimposed drift in the 
direction of the field: 

[ 1 (v) =A, exp {- 2~; [v! + v; + (v:- v1 ) 2l} 
(2) 


