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ductivity a = a ( w ) . Using the connection between 
these quantities and the optical constants, it is 
then easy to find the dispersion formulas for the 
index of refraction n = n ( w ) and the extinction 
coefficient k = k ( w). If in these calculations we 
keep the third order terms, we have a derivation 
of the dispersion formulas with approximate in­
clusion of the effects of interaction between the 
electrons. 

This opens up possibilities for the development 
of a many-electron theory of the optical properties 
of crystals within the framework of the quasi­
homopolar approximation. 

The practical realization of this program en­
counters mathematical difficulties in connection 
with the diagonalization of the operator ( 5.1). 

Using Tiablikov's method of approximate diag­
onalization,2•3 which is correct for weak perturba­
tions of the system, it is possible in principle to 

carry out the indicated program for some partic­
ular case, for example for a ferromagnetic crystal 
in a state close to saturation. 
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The energy spectrum of a uniaxial antiferromagnetic substance is obtained without the assump­
tion of nominal magnetization of the spin sublattices in the ground state. 

THE existing theory of antiferromagnetism 1 is 
based on the hypothesis (first proposed by Lan­
dau2) that an antiferromagnetic substance can be 
described in terms of two or more magnetic mo­
ments, which compensate each other in the absence 
of magnetic field. The construction of the micro­
scopic theory of antiferromagnetism ordinarily 
begins with the Heisenberg model of exchange inter­
action and the assumption of a regular ordering of 
"left" and "right" spins in the ground state.3•4 

As has been remarked by Landau, such an as­
sumption is in contradiction with quantum mechan­
ics: the spin component of an individual atom in a 
prescribed direction cannot have a definite value, 
because of the exchange interaction. On the other 
hand it appears that the experimental data do not 

contradict the results obtained by the use of this 
model. 

The purpose of the present paper is to show 
that the energy spectrum of an antiferromagnetic 
substance, and thus all of its thermodynamic func­
tions, can be obtained in a phenomenological way 
just from the assumption of two (or more) sub­
lattices, without postulating nominal magnetization 
of each of the sublattices in the ground state. 

1. The assumption of the existence of two (or 
several) sub lattices can be reduced to the assump­
tion that the state of an antiferromagnetic substance 
is characterized by the specification of two (or 
several ) magnetic moments Mi ( r ) at each point. 
Here one picks out as the ground state the state 
with homogeneous values of each of the magnetic 
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moments, Mio• such that EMio = 0. Such a de­
scription is clearly legitimate at low temperatures, 
for which only long-wave vibrations of the spin sys­
tem are excited and the atoms of an elementary 
cell can be regarded as situated at a single point. 

In what follows we shall consider for simplicity 
an antiferromagnetic substance consisting of two 
sublattices with magnetic moments M1 ( r) and 
M2 ( r ) . This treatment is surely applicable to uni­
axial antiferromagnetic substances. 

We write the Hamiltonian of the system in the 
following form: 

S't = ~dV {1XM1M2 -M1H -M2H 

+ +A (Mix+ Miy + M~x + Miy) (1) 

where a, {3, {312 are constants connected with the 
exchange interaction, and the last three terms de­
scribe the exchange interaction caused by the in­
homogeneity of the spin system. As will be seen 
below, in antiferromagnetic substances {3 - {3 12 > 0. 
Furthermore it can be shown that 

~. ~12 ~1Xa2 ~8cl M 2a, 

where ec is the Curie temperature and a is the 
lattice constant; if M .... tJ.I a3 ( f.1. is of the order of 
magnitude of the Bohr magnetron), then {3, {3 12 .... 

a2ec/tJ.M and a .... ecltJ.M » 1. In the general 
case the term involving the spatial inhomogeneity 
of the magnetic moments is of the form 

M~;m (aMsi I ax") (aMs'l I axm). 

For a uniaxial substance, in virtue of the isotropic 
nature of the exchange interaction, we get the ex­
pression that appears in the Hamiltonian (1). 

In the above, A is the constant of the magnetic 
anisotropy ( the z axis is taken along the preferred 
direction). We note that A« a, since the mag­
netic anisotropy is due to relativistic interactions: 
A .... a ( v c )2, where v is the speed of the elec­
trons and c is that of light. We have omitted from 
the Hamiltonian terms proportional to the squares 
of the magnetic moments, M~ and M~, since they 
do not make any contribution to the equations of 
motion of the magnetic moments ( see below). 

The magnetic field H is composed of the con­
stant homogeneous external field H0 and the mag­
netic field h of the spin waves, which satisfies 
the equations of magnetostatics, 

curl h = 0, div h =- 47t div (M1 + M2). (2) 

Starting with the Hamiltonian (1), we write the 
equations of motion of the magnetic moments: 

aMs/ at= g [Msx H~rr.]; H~rr =- '8$'t I '8Ms, (s = I' 2), 
(3) 

where o:JC/ oMs is the variational derivative of the 
Hamiltonian with respect to the magnetic moment 
and g is the gyromagnetic ratio ( gli = f.1. ) • 

Using Eqs. (2) and (3) (in analogy with the pro­
cedure used by Herring and Kittel5 ), we can find 
the magnetic branch of the energy spectrum of the 
antiferromagnetic substance in the neighborhood 
of the ground state. To do this we linearize (2) 
and (3), substituting for M 1 and M2 the expres­
sions 

(4) 

Taking H0 along the z axis and assuming that 
all the variable quantities ( p. and h) are propor­
tional to e-i(wt-kr), we get: 

iw (P.1 + P.2)- g [H0 x ( P.1 + P.2)l 

= g {A+(~- ~12) k2} [Mx ( !1-1 -p.2)1, 

- iw (P.1- P.2) + g [Hox ( !1-1- P.2)l 

= 2g M x{(1X- A-(~- ~12) k2) (P.1 + !1-2) 

- (8r.k I k2) [k x ( P.t + P.z)]} 

Since the constant a is very large, the second 
equation of (5) can be considerably simplified: 

(5) 

iw (p.1- p.2)- g [Hox ( p.1- p.2)] = - 2giX [M x(P.1 + p.2)]. 

(6) 
In fact, A « a and 

~k2 ~ (8c I [LM) (ak) 2 ~IX (ak) 2 <{::ex, 

since we are of course interested only in the long­
wavelength vibrations ( ak « 1 ) . 

Neglect of the last term in the second equation 
of (5) is equivalent to the neglect of the magnetic 
field of the spin wave. This means that in an anti­
ferromagnetic substance the proper magnetic field 
of the spin waves never leads to a change of the 
dispersion law, as occurs in a ferromagnetic sub­
stance ( cf. Refs. 5 and 6). 

From Eqs. (5) and (6) we have 

W1,2 = V 2g2cxM2 [1, + (~- ~12) k2] + gH0 ; (7) 

and the energy E = hw of the spin wave is given by 

812 = [LM V 21X [A+(~- ~12) k2] + [LH 0 • (8) 

From (7) or (8) it can be seen that the differ­
ence {3 - {3 12 must be positive, since in the oppo­
site case the ground state would have a finite value 
of k, i.e., the ground state would be inhomogene­
ous. This fact enables us to introduce the follow­
ing notation:* 

*Essentially this is a definition of the two quantities Ha 
and e c· The former is the magnetic field that would have to 
be applied along the axis of easiest magnetization to make 
the antiferromagnetic state thermodynamically unstable;3 the 
latter is of the order of the Curie temperature. 
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'V 2()(A M = H a• 'V 2()( (~ - ~12) p.M I a = 8c. (9) (11) 

We then have from Eq. (8) 

E1,2= V(p.Ha)2 +8~(ak)2 +p.H0 (H0 <Ha)• (10) 

For H0 = 0 1here is a two-fold degeneracy: 

For k = 0 the energy E 1 2 of 1he spin wave is 
' equal to p,Ha, and for sufficiently large k it is 

proportional to k: 

ak ~ p.Ha / 8c, 

ak ~ p.H a I 8c. 
(12) 

Using Eq. (11) for 1he energy of a spin wave, we find by the usual formulas of statistical physics 1he 
spin part of the specific heat of an antiferromagnetic substance: 

C _ {( 1 I rr V 2rr) R. (p.H a I 8c) 3 (P.Ha I T)'l2 e- p.Ha!T' (T < p.Ha),, 
s- (4rr2 jl5)R.(TI8c)3 (8c~T:?p.Ha)· 

(13) 

2 .. For 1he determination of the temperature dependence of the magnetic susceptibility (X 11 and X_1.) 
we must know in particular the energy spectrum of the antiferromagnetic substance in a magnetic field 
perpendicular to the axis of easiest magnetization. 

If we take 1he x axis along the magnetic field, in the ground state the magnetic moments of 1he two 
sublattices have the following components ( A. « a ) : 

(14) 

We note that here each of the moments is parallel to its own effective field. Moreover, the expres­
sions (14) make clear the physical meaning of the constant a: 1 a = X_1.0, where X_1.o is the value of the 
perpendicular component of the magnetic susceptibility at temperature zero. 

Using linearized equations of motion analogous to the preceding, we find the energy spectrum in this 
case (H perpendicular to the axis of easiest magnetization): 

(15) 

or ( in the previous notation ) 

E1 = V (p.H a)2 + 8~ (ak)2, (16) 

Knowledge of the dependence of the energy of 1he spin waves on the magnetic field [ Eqs. (10) and (16)] 
enables us to find the dependence of the magnetic susceptibility on the temperature: 

Xu,= -a2D.IaH;aH~t/H-o, 

where Q = T L ln ( 1 - e -Ek/T) is the thermodynamic potential of the "spin wave gas." 

k 
After some simple calculations we get 

The temperature dependences found here for the 
specific heat and the magnetic susceptibility natu­
rally agree with the results previously obtained by 
Neel by microscopic considerations. 1 Here they 
bring us to our goal of relating the phenomenologi­
cal constants ec and Ha, which we have intro-

(17) 

(18) 

duced to the measurable quantities cs, X ", and 
X_i. 

3. One can, of course, deal in a similar way 
with more complicated magnetic structures, in 
particular ferrites, in which the magnetic moments 
of the sublattices do not compensate each other. 
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If there are no special reasons for supposing that 
the difference between the magnetic moments of 
the suhlattices is small ( as, for example, in the 
case of Fe20 3, according to Refs. 7 and 8 ), then 
on carrying out calculations similar to those above 
we easily find that the magnetic part of the spec­
trum consists of two branches ( if there are two 
sublattices). One of these has a large activation 
energy, of the order of ec and is of course not 
excited at low temperatures (this is the analog of 
the optical branch in the vibrations of compound 
lattices ) . The other one is analogous to the ordi­
nary Bloch spin waves. For the case of two mo­
ments and at not too low temperatures it has the 
form (supposing M1 > M2 ): 

= 2gM,M2 (R_R )k2 
w Mt-M• t' t'l2 • 

(19) 

Therefore the magnetic part of the specific heat 
must be proportional to T31l, as it is for ordinary 
ferromagnetic substances. 
In conclusion the writers take this occasion to 

thank L. D. Landau and I. M. Lifshitz for valuable 
discussions on the questions considered here. 
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The theory of radiation damping is used to investigate elastic scattering of Dirac particles by 
a stationary short-range center of force. An equation is obtained for the scattering cross sec­
tion A relation [Eq. (5)] is established between the scattering phase shifts predicted by the 
theory of radiation damping for Dirac particles and relativistic spinless particles. 

IN the present work the theory of radiation damping is used to study elastic scattering of Dirac particles 
by an arbitrary short-range center of force . This has already been done1 only for spinless particles (here­
inafter we shall use the notation developed in that article and denote it by SK) . In the present case we shall 
divide the wave functions into two groups according to the z component of the spin ( ms = ±! ), rather 
than according to the component of the spin in the direction of motion, as was done in SK. Then the funda­
mental integral equation [see Eq. (21) of SK] of the theory of radiation damping for elastic scattering of 
spin-! particles becomes 

(en (l}- 1) H~~k (l, ms'• ms) = 8:~1ti ~ En• (l') ~ dQ." H~~k· (l, ms'• ms•) H~'!~ (l', m5•, m5), 
l',n1 ,ms" 

(1) 


