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The Hamiltonian of Bardeen is analyzed in this paper and the method of summation of the prin­
cipal diagrams is applied. It is shown that the same results are obtain in this way as in Refs. 
1 and 2. 

RECENTLY great successes have been attained 
in the solution of problems of statistical physics 
by means of summation of the principal diagrams. 

In the present paper we shall show that in the 
theory of superconductivity, we can also obtain (by 
this method) those results which were found in pre­
vious researches1•2 with the aid of a canonical 
transformation and the principle of compensation 
of diagrams with "dangerous" energy denominators. 

As has been shown by Tolmachev and Tiablikov ,2 

we can consider the Hamiltonian of Bardeen in 
place of that of Frohlich, since they both, up to a 
known degree, give equivalent results for the effect 
of electron-phonon interaction on the dynamics of 
electrons close to the Fermi surface. In our case 
the Bardeen Hamiltonian is considerably simpler. 

Therefore, for a more graphic description and 
to establish the connection with the ideas of the 
work of Bardeen, Cooper, and Schrieffer,3 we shall 
start out from the Hamiltonian of Bardeen: 

where 

{ I' 6 (k) = 0, 

Ha = ~ E (k) aitaks 
k,s 

E (kp) -w<E(k) <E (kp) + w 

\E (k) -E (kp) \>w 
{ I, k=O, 

/::,. (k) = 0, k =I= 0 

and where E (k) is the radially symmetric func­
tion representing the energy of an electron of mo­
mentum k; I and w are the Bar de en parameters. 
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In the Frohlich model, we must set2 

We shall take into account the value N of the 
total number of electrons by means of the chemi­
cal potential ;>.., for which purpose we add the term 
- ;>..N to HB. Then we obtain the Hamiltonian 

H =r= H0 +Hint. 

H o =] {£ (k)- ),} a:Saks. 
k, s 

for which we shall also consider the question of 
the_ summation of the principal diagrams. 

Since the interaction is effective only in a small 
region of t.he Fermi sphere and only between par­
ticles (electrons or holes) with oppositely directed 
spins, we see that a very important role will be 
played by diagrams of the type shown in Fig. 1. 
These diagrams were constructed from an "irre­
ducible complex" (see Fig. 2), consisting of a pair 
of particles with momenta ± k and spiRs ± ~. 

FIG. 1 

FIG. 2 

To sum the diagrams, we make use of the 
method of approximate second quantization, i.e., 
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we construct a simplified Hamiltonian, for which 
the diagrams will only be of that class which we 
desire to sum, and furthermore, with the same 
contribution which is made in the present Hamil­
tonian.* 

Since the complexes of pairs of particles ( ± k, ±!) 
are not broken up .in the diagrams considered by us, 
it is natural to compare their quantum amplitudes 
~. ~ with the commutation relations 

[bk, bk'] = 0, [bt, bt] = 0, [b;i' bk,] = 0; k =I= k'. ( 2) 

We proceed to the construction of an asymp­
totically exact solution of this latter problem, neg­
lecting only the quantities which vanish in the limit: 
v- 00, 

We shall distinguish between pairs of electrons 
and pairs of holes, for which purpose we intro­
duce the new Pauli operators, setting 

~~<= bt, E(k)<A, 
~k = bk, E (k) >A. 

We get 
Furthermore, since there do not exist several pairs 
with the same value of k, we must have 

( 3) 

We note further that the eigenenergy of the com­
plex will be 

and that the matrix element of the Hamiltonian ( 1) 
for the transition k - k' will be proportional to 
-I/V. 

From these considerations, we obtain a simpli­
fied Hamiltonian of the form 

H=Ho"+Hint. Ho = ~2(E(k)-A)btbk, 
k 

Hint=--~ ] btbk,fJ (k) fJ (k'), 
(k+k') 

which contains the operators hk· b~ [with the 
commutation relations ( 2), ( 3)] which we shall 
call the Pauli operators. 

Taking expressions of arbitrary order 

Hint (Ho- Efl Hint ••• (Ho- Ef1Hint. 

(4) 

it is now easy to verify directly that the sum of 
contributions from the diagrams of the type con­
sidered for the Hamiltonian ( 1) will be equal to 
the sum of contributions of all diagrams for the 
simplified Hamiltonian ( 4). 

Thus, the problem of the summation of a spe­
cial class of diagrams for the Hamiltonian ( 1) is 
shown to be equivalent to the problem of the model 
of the dynamical system that is characterized by 
the Hamilto:qian { 4) . 

*We emphasize that the new meaning of "summation" in­
troduced here cannot be taken in the universally accepted 
sense. Strictly speaking, we do not sum here a series of terms 
of a given class, bu! we compare the Hamiltonian for which 
the expansion of perturbation theory exactly coincides with 
the given series. From. the mathematical viewpoint, we are 
dealing here with concepts close to those of the theory of 
quasi-analytic functions. 

where 

H = U +.2 ~IE (k) -AI ~t~k 
k 

- ~ ~ fJ (k) 9 (k') {fJo (k) ~t 
k+k' 

+ 9p (k) ~k} {60 (k') ~k' + fJp (k') ~;i;}, 

{ I, E(k)<A 
fJp (k) = 0, E (k) >A 

U = 2] {E (k)- A} 9p (k), 60 (k) + fJp (k) = I. 
k 

( 5) 

Let us consider the wave function C for which 
all the filling factors 

nk.= ~t~k 

are equal to zero. Then 

~kc = o. 

We shall show that this wave function is an as­
ymptotically exact eigenfunction of the Hamilton­
ian H, giving it the value U. 

In fact, we have 

'• 
H = H' + H" + U, 

H' =2 ~IE (k)- A I ~t~k- ~ ] fJ (k) fJ (k') {fJo (k) ~t 
k k+k' 

+ fJp (k) ~k} 60 (k') ~k'- -~ ~ fJ (k) fJ (k') fJp (k) fJp (k') ~t~k· 
h+h' 

H" = - ~ ~ fJ (k) 9 (k') 90 (k) fJp (k') ~t~;t. 
h+k' 

But, obviously, 

H'C = 0. 

On the other hand, 
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+ 
<C* I H" /2C) = < C* H" H"C> = 

I2 ~ = V2 LJ 6 (k) 0 (k') 00 (k) Op (k') < const when V->- :x>. 
k+k' 

But, in the limit V - 00 , H must be propor-

or 

"' 
1 = _£_ \ k2 dk 2z dz 

2 j dEz2 -E2j4' 
0 

tional to V, while Ill" I~ as we have noted, re- where 
mains finite. Therefore, in fact, C is an asymp-
totically exact eigenfunction of H, giving it the 
value U. 

We have also 

N = (C*NC) = ~ 2. 
E (k) <I. 

Equating this expression to the total number of 
electrons in the Fermi sphere 

~ 2, 
E (k) < EF 

we see that 

/.. = EF = E (kp). 

We now analyze the problem of the stability of the 
state C. We consider first the case in which 

I<O. ( 6) 

We supplement the double sum in ( 5) with 
terms for which k = k', terms that make no con­
tribution in the transition to the limit V- oo, We 
then note that H - U is essentially a positive 
form. The value U will consequently be a min­
imum and the state C will be stable from the 
same considerations. 

The situation will be different in the case 

I>O. 

We note that since all the filling facts nk = 
(3~(3k in the state C will be equal to zero, we 

( 7) 

can, upon computation of the energy of the elemen­
tary excitations, consider the Pauli operators (3, 
13+ to be Bose in character. 

There then remains only the diagonalization to 
quadratic form of the operators (3, 13+ which rep­
resent H - U of ( 5). This diagonalization can be 
achieved, for example, with the aid of a method 
set forth in our monograph.4 

For the determination of the energy E of the 
elementary excitation, we get the following secu­
lar equation: 

I ~ { eF (k) 60 (k) } 
1 = V f 6 (k) ek-E + ek + E ' 

ek = 2J E (k) - E (kF) /, 

whence, upon simplifying, we get 

1=__£_ ~ ~-
v lEp< E (k) <Ep+O>) e~- £2 ' 

_ I (k2 dk) 
p - 2n:2 (ifF k=kF • ( 8) 

As is seen, this equation, in the case ( 7) under 
consideration, always has a negative root for E2• 

Consequently we obtain a purely imaginary value 
for the energy E: 

E ~ + i2we-IIP. ( 9) 

Thus the state C is found to be unstable. 
In order to find the stable ground state with 

minimum energy, we introduce the new Pauli am­
plitudes f3k, {3fc in non-trivial fashion, as earlier, 
with the aid of the relations 

( 10) 

where Uk and Vk are real numbers satisfying 
the relation 

u~ + v~ = 1. ( 11) 

It is not difficult to note that the amplitudes ( 10) 
actually satisfy all the commutation relations of 
the Pauli operators. 

Turning to the transformation ( 10), we find: 

bk = Ut..Vk ( 1 - 2~;~k) + u~~ - v~~;, 
b[ = ukvk ( 1 - 2~;~~<)- v~~k + u~~t, ( 12) 

b'tbk = v~ + (u~- v~) ~ii~k + uhvh (~k + ~ii). 

Substituting these expression in the Hamiltonian 
( 4 ) , we find: 

H = U + ~{2(E(k)-J..)ukvk 

- ~ 6 (k) (u~- v:) ~ uk'v",6 (k')} (~k + ~ii) 
k' 

+ ~ 2Ee (k) ~~~k- ~ ~ (ut~:,- v~;~k,- 2uk,vk,~i,~k,} 
k k,+k• 

where 

U = ~ 2 (£ (k) - /..) V~- ~ ~ 6 (k1) 6-(k2) Uk,Vk,Uk,Vk,; 

k (k,, k,) 
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E. (k) = (E (k)- A) (u~- vV + 6 (k) ukvk 2~ L 6 (k') uwvh'· 
k' ( 15) 

We let the coefficients for Wk + ,B~ ) in Eq. 
( 13) vanish, and get 

2 (E (k)- A) ukv"- ~ ll (k) (u~,- vV ~ 0 (k') uk'vh' = 0, 
k' ( 16) 

which was found in Ref. 2 with the help of the prin­
ciple of compensation of dangerous diagrams. 

Noting that A= E (kF) (with the accuracy re­
quired here), we have, just as in Ref. 2: 

1 { E (k)- E (kp) } 
uz (k) = 2 1 + V<E (k)- E (kp)) 2 + 6 (k) c• ' 

1 { E (kp)- E (k) } 
vz.(k) = 2 1 + y (E (k)----;- E (kp))2 + 6 (k) c• ' 

C = 2we-l/P, 

E. (k) = V<E (k)- E (kp))2 + (j (k) C2 • 

( 17) 

The Hamiltonian ( 13) can now be written in the 
form 

H = U + H 0 + H' + H" 

where 

H0 = ~ 2Ee (k) ~;i~k• 
k 

H' = - ~ ~ ll (k1) ll (k2) {uf,,~t, 
(k,+k,) 

( 18) 

H" = ~ ~ a (kl) a (kz) {u~.~k,- vt~ii; 
(kdh,) 

+ ~ ~ a (k1) 6 (k2) {ut~t,- v7,,~ 
(k1+kz) 

We select the wave function C for which all the 
filling factors 

are zero. We shall show, as before, that, with ac­
curacy to quantities which vanish in the limit v 
- oo, C is ~ eigenfunction of the Hamiltonian H, 
giving it a value U. We actually have 

(H0 -f-H")C=0 

and 

< const, V _,. oo. 

We now proceed to the consideration of elementary 
excitations. Since all the filling factors vk in the 
state C are equal to zero, we can consider the 
Pauli operators to be Bose operators in the calcu­
lation of the energy of the elementary excitations. 
Therefore, in the equation for the Hamiltonian ( 18) 
we can limit ourselves to the quadratic form H0 

+ H'. 

Carrying out the diagonalization by the method 
described earlier,4 we obtain a set of linear equa­
tions: 

k' 

- (E + 2Ee (k)) xh = U! ~ 6 (k) ~ {u~,xk'- v~,<pk,} 6 (k') 
k' 

- ~ a (k) v~ ~ {u%,'f'k'- v~,xk,} ll (k') 
k' 

with the normalization condition 

~{I cp" 12 -I xk 12 } = I. 
k 

Then we obtain the secular equation: 

J I 1.( u~ v~ . l 
l1 + V ~ \2Ee+ E + 2Ee-E )o (k)J 

{ I (' vf, u! ) } 
X 1 + V ~ 2Ee + E + 2Ee- E O (k) 

( 19) 

(20) 

-{f~G(k)u!v~(2E ~E +2£ ~£)}2=0. 
e e (21) 

It is easy to see that for 

IE I< 2 min Ee (k) = 2Ee (kF) 

this equation has no solution, since the subtrahend 
in Eq. (21) is then l_ess than the minuend. 

For 

IE I> 2 min Ee (k) 

we have a continuous spectrum 

E = -:J~ 2Ee (!<) + 0 (! jV), 0 (I jV) _,.Q when V _,. oo. 



NEW METHOD IN THE THEORY OF SUPERCONDUCTIVITY 55 

As is seen from ( 19), the minus sign does not 
agree with the normalization condition (20·). 

Thus all the E are positive (this can be seen 
directly from the fact that the quadratic form 
under consideration is positive definite) and are 
separated from zero by the gap 

E = 2Ee (k) :;?-:- 2£. (kF) = 2C = 4we·-l/P. (22) 

Here again we obtain the results of Bardeen as 
in the previous papers .1 •2 

Since we have confined ourselves only to dia­
grams consisting of pairs, we cannot decide di­
rectly from (22) that the excitation with energy 
2Ee (k) (Eq. ( 22)] consists indeed of two excita­
tions of the Fermi type, which was shown in Ref. 1. 

As we see, the method of summation of dia­
grams is shown to be quite lucid and permits us to 
establish the connection with the ideas of the work 
of Bar de en, Cooper, and Schrieffer. 

However, in our opinion, the method of canoni­
cal transformation is more flexible, allowing us 
easily to obtain the higher approximations. More-

over, it achieves various generalizations, for ex­
ample, in the calculation of thermodynamic quan­
tities. 

In conclusion, I should thank D. N. Zubarev, V. 
V. Tolmachev, S. V. Tiablikov, and Iu. A. Tserkov­
nikov for their valued discussion. 
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The effective cross-sections are calculated for a number of radiative processes occurring 
in the interaction of high-energy 1r mesons with nonspherical nuclei. The nonspherical 
shape of the nuclei leads to a change of the angular distributions and the appearance in the 
cross-sections of factors that depend only on the geometrical shape of the nuclei. 

IN papers by Landau and Pomeranchuk, 1 Pomer­
anchuk,2 and Vdovin3 treatments have been given 
of the processes of bremsstrahlung in the inter­
action of 1r mesons with nuclei, production of 
1r-meson pairs from nucfei by 'Y quanta, and pro­
duction of nuclear stars by 'Y quanta, for very 
large 1r-meson energies E and y-quantum ener­
gies w ( E » ,.,.; w » ,.,., where ,.,. is the mass 
of the 1r meson; we set n = c = 1 throughout). A 
peculiarity of these processes at such energies is 

that very large distances from the nucleus ( reff 
....., E/1-'2 » R) contribute to the matrix elements 
that give the probabilities of the processes, and 
one can use in the calculation the asymptotic form 
of the 1r-meson wave functions outside the region 
of their interaction with the nucleus. At large en­
ergies one can take these functions to be diffrac­
tion functions. The functions used in the papers 
mentioned are those of the diffraction by a black 
or a gray sphere. 


