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The equivalence of the Bardeen Hamiltonian and the Frohlich Hamiltonian is established in the 
adiabatic approximation. The energy of the ground state and of efementary excitations are cal­
culated by means of a canonical transformation. 

IN Ref. 1, Bogoliubov has shown that the property 
of superconductivity is possessed by a model of an 
electron gas in which the mutual interaction of the 
electrons is neglected but their interaction with the 
phonon field is taken into account. These results 
were established with the help of the Frohlich Ham­
iltonian for the description of the system:2 

(1) 

Hel = ~ (E (k)- 1.) aita ah, a; Hph = ~ tiw (q) b/bq; 
(k, o) (q) ( 2 ) 

Hf~t = ,r~- ~ t..w(k-k')(at.a a"·" h-h' 
r 2V (k, k', o) 

(3) 

where E (k) is the energy of the electron; t:iw ( q) 
the energy of the phonon; k, q are the wave vec­
tors, a the spin variable (a = :1: l); V the vol­
ume of the system; g the coupling constant; and 
A the chemical potential. The creation and anni­
hilation pperators of electrons (a+, a) and phonons 

*The first paper of this series1 will be denoted by I. 

( b+, b) satisfy the usual commutation relations, 
and A is defined by the condition 

~at.a ak,a = N, 

"· " 
where N is the given number of electrons. 

The results of Bardeen3 were obtained with the 
use of a certain eqmvalent Hamiltonian of the elec­
tron-electron interaction in place of the Hamilton­
ian ( 3), under not completely clear assumptions as 
to the suitability of the formation of electron pairs 
on the Fermi surface. Below, we shall show the 
equivalence of the Hamiltonians of Bardeen and 
Frohlich, and shall el'ltablish the property of super­
conductivity for the Hamiltonian of Bardeen thus 
obtained. In the calculation, we shall make use of 
the method of Bogoliubov .1 

The characteristic feature of electron-phonon 
interaction [ Eq. ( 3)] is the fact that it is effective 
only in a thin layer at the Fermi surface, and falls 
off rapidly with increasing distance from it. There­
fore, the principal contributions to all effects will 
be made by electron transitions at the Fermi sur­
face. In this case the energy of the electron tran-
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sitions can be regarded as small in comparison 
with the energy of the phonons tiw, and we have 
typical adiabatic coupling, wherein the frequencies 
of one subsystem (the electrons) are regarded as 
small in comparison with the frequencies of the 
other subsystem ( phonons). We note further that 
Hint ~~:J fiiW and consider Hint to be of first order 
of smallness, while Hel is of second order of 
smallness. For convenience in the intermediate 
calculations, we introduce the small parameter E. 

We shall set E equal to unity in the final results. 
Under these assumptions, the Hamiltonian of the 
system ( 1) can be written in the form: 

( 4) 

We make use further of the operator form of 
pertrubation theory.4 For this purpose we denote 
by P the projection operator,* which projects the 
eigenfunctions C of the operator H on the sub­
space of eigenfunctions of the operator Hph• while 
we denote by C0 the <Jigenfunctions of this sub­
space (Co= PC). In this case the problem of find­
ing the eigenfunctions and eigenvalues of the equa­
tion 

(H -E)C = 0 (5) 

reduces to the solution of the equation with a cer­
tain "deformed" operator. With accuracy up to 
terms in E2 inclusively (to which we also limit 
ourselves below} this equation has the form: 

(£-Eo) Co=P{eHint + e2Het- E2 (Hint- PHintP) 

(H0 -E0 flx(Hint-PHintP)}PCo. (6) 

where E0 is the eigenvalue of the operator Hph· 
We first consider the case of a phonon vacuum 

and set E0 = 0. We also note that PHelP =HelP, 
since Hel does not act on the phonon variables 
and that PHintP = 0, since Hint is linear in the 
operators b and b+. Thus the third term in the 
curly brackets of ( 6) takes the form 

( 7) 

In this expression it is easy to see that only the 
terms with a1 1- a2 are different from zero. Put­
ting the creation operators on the left and the anni­
hilation operators on the right and adding the quad-

*The operator P is defined in the following manner: 
PC~ cp0 (Cfio C), where cp0 is the eigenfunction of the operator 
Hph; the parentheses denote scalar multiplication. 

ratic form in a+a (isolated by this process) to 
the kinetic energy operator, we write down Eq. ( 6) 
in the following form 

ECo = (H o + H~nt) Co, (8) 

where 

~ 'g2 "' H 0 = LJ e (k) at,, ak,a ; e (k) = E (k) - 2V L.J I -A;( 9) 
(k, a) (k,) 

B g2 
Htnt=v 

(here and below, the formal small parameter E 

is set equal to unity). The second component in 
E (k) takes into account the usual correction to 
the chemical potential. 1 

The interaction term H?nt in Eq. ( 10) coin­
cides with the corresponding expression used in 
the work of Bar de en, Cooper, and Schrieffer. In 
our derivation of Eq. ( 8 ), we have considered the 
energy of electron transitions to be small in com­
parison with the energy of the phonons tiw, which 
is valid only for transitions in a spherical shell 
near the Fermi surface. The breadth of this layer 
will evidently be of the 'order of some effective fre-,..., 
quency tiw. Use of the original Hamiltonian of 
Frohlich Hint of Eq. ( 3) leads to a similar re­
sult, as was shown by Bogoliubov in I. 

Application of perturbation theory to the opera­
tors ( 8) - ( 10) leads to a logarithmic divergence 
at large distances from the Fermi surface. The 
reason for this appearance lies in the fact that in 
the derivation of ( 8) in the adiabatic approximation 
the energy of electron transitions was considered 
to be small in comparison with the energy of the 
phonons. However, the latter is only valid near the 
Fermi surface in a certain spherical shell of thick­
ness of the order of the "effective phonon energy" 
ti~. 

In the more accurate variant of the research of 
Bogoliubov, it is seen that the principal contribu­
tion in all quantities is given by effects which take 
place in this layer. 

In correspondence with these considerations, we 
introduce a cutoff parameter into Eqs. ( 8) - ( 10) 
and consider the equation in the spherical shell 
kF ± ~ where kF is the Fermi wave vector which 
is determined from the condition E (k) = 0. In 
view of the logarithmic singularity, the quantities 
ought to be only slightly sensitive to the choice of 
the cutoff parameter ~. 

We note that the corresponding equation in the 
work of Bardeen, Cooper, and Schrieffer is under­
stood in precisely this sense. 
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We carry out a canonical transformation1 on the 
operators 

ah, 'f, = uhrxk, 1 + vkrx~k. 0; ak, -'I• = ukrxk, o - Vkrx±k, 1; 

+ + (11) 
ak, -'lz = UkiXk, o- Vf<IX-k, 1; 

u~+v~=1; (u_,.=u";v_"=vk), (12) 

where a, a+ are new Fermi operators; uk, vk 
are the coefficients of the transformation, which 
will be defined below. 

In the new variables, the Hamiltonian of Eq. ( 8) 
can be written in the form 

The vanishing of the coefficients of ak,t a~k,o 
leads to a system of equations for the functions 
Uk, Vk: 

( 18) 

We note, furthermore, that the set ( 18) has a 
trivial solution UkVk = 0 and hence 

·where 

This solution, as is seen from what follows, cor­
( 13) responds to the normal (non-superconducting) state 

of the system. 

' 
s0 = 2 ~ s (k) vt 

(k) ( 14) 

(15) 

H1 = 2 ~ s (k) ukvh (rxt, 1rx~k. o + rx-k, 0rxk, 1~- ( 16) 

H -It ~(u .u .a."': a.-1; -v .v .a. , rx . 
2 - -v ..::::.; "· "· "" 1 "" o "· "• -~<,. o -k., 1 

( 17) 

We shall further regard H0 as the operator of 
zeroth approximation and H1, H2 as perturbations. 

It was shown in I that, in line with perturbation 
theory, there will be dangerous terms correspond- • 
ing to the creation of two particles; it is shown 
ther@ that this is connected with the presence of 
logarithmic singularities on the Fermi surface. 

The situation is very much the same for the 
Hamiltonian ( 13 ). To remove the difficulties with 
divergence in first order in g2, we sum over all 
diagrams leading from the vacuum to the two-par­
ticle states, and so choose the functions uk, Vk 
that they compensate one another. One such dia­
gram is in the Hamiltonian H1: 

2 ~ s (k) ukvkrxt, 1rx~k. o 

and two in the Hamiltonian H2: 

In order to find the nontrivial solution, we intro­
duce the notation: 

(20) 

Then, making use of the normalization condition 
( 12) for the functions Uk and Vk• it is not diffi­
cult to solve the set ( 18) relative to uk and -vk: 

2 1{1 e(k) } 
Uk = 2 + V C2 + e2 (k) ; 

v2 = .!{1- e(k) 1 
"2 YC2 +e2 (k)f" 

(21) 

Substituting the results found for UkVk in (20), 
we get an equation for the constant C: 

1 = (g2 f 2V) ~ [C2 + s2 (k)]-'1•. 
(h) 

(22) 

Transforming from sums to integrals in ( 22 ), 
and taking it into consideration that the range of 
integration in k lies in the interval (kF - .6., 
kF + .6. ), we can obtain for C the following as­
ymptotic solution: 

C=2Lle_1,P; p=2g2k}/(27t)2 s'(kp); Ll=s'(kF)~.( 23 ) 

We now compute the energy of the elementary e~ 
citations in first approximation in g2: 

or, utilizing Eqs. (20) and (21 )* 

n (k, y) = VC2 + s2 (k), (24) 

where the constant C is determined by Eq. ( 23). 
For the normal state, obviously, 

*Equation (24) was obtained by Bardeen, Cooper and 
Schrieffer, as pointed out in the paper of Bemardes.5 
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Q (k, y) = 6 (k). (25) 

We see from (24) that, in contrast to the nor­
mal state, the energy of the elementary excitations 
differs from the ground state by the gap 

tiQ =c. (26) 

Just as in I, we can consider the current state, 
i.e., the state with the total momentum of the sys­
tem different from zero. In this case we can show 
that for sufficiently small velocities u, the value 
of the gap falls off proportional to u. 

Proceeding to the computation q_f the addition to 
the energyofthe ground state, we note tnat the con­
tribution in it amounts to only one term. As are­
sult, we obtain 

(27) 

(for the normal state, C = 0 and t..E0 = 0 ). 
We now show that the superconducting state is 

energetically more advantageous than the normal. 
Making use of Eqs. (14}, (27), and (31), we obtain 
for the difference of the lowest energy levels of 
the superconducting and normal states 

tiE = s0 + tis0 - ~ e (k) { 1 - I:~=? I} = 
- ""{1 e (k) I - e2 (k) } - __!:"__ C2 
- ~ YC 2 + e2 (k) g2 • (28) 

Hence, with the same degree of accuracy as in 
the asymptotic solution for C, we finally obtain 

k~ (2~)2 -
tiE = -- V (27t)2 e' (kp) e 2/P, (29) 

We can interpret the quantity 

2k~ ~ { V Lmk2dk l 
(21t)2 e:' (kF) = V (27t)s IIEf~<~hr 

as the relative density of electron levels, dn/dE. 
Then ( 29) is rewritten in the following form: 

_!__ A£= _ !!!!:__ (215.') -2/P· v u dE 2 e • 
dn 

p = g 2 dE - (30) 

Identifying the thickness of the layer · 2~ with 
the quantity ;:; from Eq. ( 14) of I, we obtain 
agreement with all the results obtained by Bogoliu­
bov with the use of the Hamiltonian of Frohlich. If 
we carry out the substitutions ~- w, i"- V, 
dn/dE = N in ( 30 ), then clear agreement of the 
results is obtained with the results of Bardeen et 
al.3 The minimum energy necessary to break up 
the pair calculated in Ref. 4 is evidently equal to 
twice the energy of the gap in the spectrum of ele­
mentary excitations (26 ). In the same way, com-

plete correspondence is obtained between the Ham­
iltonians of Frohlich and Bardeen and the results 
obtained with their help. 

It should be pointed out that Eqs. (26) and (30) 
are only slightly sensitive to change in the form of 
the interaction assumed by us. Thus, if we replace 
the constant rf by the quantity rf (k1 - k2 ), con­
centrated about the Fermi surface, then Eqs. (26 ), 
( 30) would be preserved with this one difference, 
that g2 would be replaced by the mean value of 
r/-(k1 - k2 ), and & would be replaced by some 
mean width ~ (k1 - k2). On the other hand, the 
Bose part of the spectrum can depend on the de­
tailed form of the function g (k1 - k2 ). We intend 
to consider this dependence in a subsequent paper. 

FIG. 1 

FIG. 2 

The results worked out above were obtained in 
first order perturbation theory. It is not difficult 
to establish the fact that the compensation of dia­
grams in second order ( g4) does not change the 
results. Actually, there are terms in the pertur­
bation operator H2 [Eq. (17)] which describe, in 
their effect on the vacuum, the creation of four 
particles - H4+, the creation of a single particle 
and the annihilation of three particles- H1+, 3-

etc. In second order perturbation theory, the con­
tribution to the diagrams with two particles as a 
result give terms of the form 

(31) 

which are drawn in Fig. 1. 
We now require that they be compensated in the 

sum with the diagrams obtained from H1 and H2 
in first order, pictured in this same figure. 

We note that the diagrams of the form shown in 
Fig. 2 are compensated automatically in this case 
by virtue of the compensation rule. 

The operators H4+ and H1+, 3- have the form 
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Since the second term is obtained from the first 
by the substitution it is evident that it only doubles 
the effect of first term. 

As a result, we obtain for uk, Vk the following 
set of equations: 

(~l<,vk) {(uk,vk,) (uk,vk,)- u~,vt} } 
€ (k) + E (k1) -t- € (k2) + € (k3) • 

(34) 

In view of the fact that the additional terms of 
fourth order in g contain products of uv with 
the same index, which give an exponentially Sll).all 
contribution, then, as one can see, they do not 
change the asymptotic solution found earlier. We 
further note that terms of fourth order were con­
sidered for the model Hamiltonian ( 10 ), which is 
itself obtained with accuracy to terms of order <j. 
Therefore, if we attempt to obtain the exact cor­
rections from terms of order g4, it is necessary 
first to improve the model Hamiltonian ( 10 ), ex­
tending the method of projection up to terms of 
fourth order. 

In conclusion, the authors take the opportunity 
to express their gratitude to N. N. Bogoliubov, as 
well as to D. N. Zubarev and Iu. A. Tserkovnikov 
for discussion of the work. 
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