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metric data; this turns out to be 9.296 ± 0.014 Mev. According to the measurements by Kinsey and Bar­
tholomew11for the reaction Fe54 (n, y) Fe55, this neutron binding energy comes to 9.298 ± 0.007 Mev. 
The discrepancy comes to merely 12 ± 16 Kev. If one uses the energy of the fi __ decay of Mnli6 from King's 

table, the same discrepancy, as shown in 
Correction to King's Table Ref. 1 becomes much worse - 60 ± 30 Kev. 

Weighted mean value 

Decay Data 
of the total energy of 
the decay 

Decay i 

I ~ethodl Refer-

I Formj Mev "Error ence Mev Error 

Mn~~Fe p- 2.88 1 M.s. ['] 3.710 11 
2.86 5 M.s. I" I 
2,81 3* M.s. [6) 
2.82 8 Scin. ['] 

y 0.866 20* M.s. [8) 
0.845 15 M.s. 1"1 
0.822 8* M.s. (6) 
0.845 10* I scm. [9) 
0.845 10* Scin. po] 

I 
Remark. The errors are presented in units of the last significant figure of 

the energy. An asterisk next to the value for the error denotes that its value 
was determined by the compiler of the tahle, either because the experimenter 
did not quote it in the cited work, or because in the compiler's opinion the 
error is undervalued. The abbreviations for the measurement method are: 
M.s.- magnetic spectrometer, Scin.- scintillation recorder. 

Calculation of the atomic masses of isotopes 
of manganese and iron in different ways, 
with the use of improved values of the en­
ergy of the {3 decay of Mnli6, allows one to 
replace the masses given in the work of 
Quisenberry et al1 by the following more re­
liable we:i,ghted mean values: Mn55 = 54.955512 
± 8, Mnli6 = 55.956700 ± 8, Fe55 = 54.955761 
± 8. 

At the present time the experimental data 
on hand is very extensive. To calculate good 
values of atomic masses it is necessary to 
have as much of the data as possible, to com­
pare and estimate their true accuracy, and 
then to select all the reliable values for the 
actual calculation. Incomplete use of all re­
liable experimental data, as seen from the 
example cited, often leads to questionable 
values of mass differences. 
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IN the present communication we shall consider certain exact solutions of the hydrodynamic equations of 
cold plasma in the presence of an external magnetic field, and also in its absence. For the sake of sim­
plicity we shall regard the ions as being at rest, but this restriction is not a fundamental one and may be 
easily removed. 
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In the case of one-dimensional flow in a plasma the solution of equations 

OV av e - -+v-=--E· at ox m ' 
(1) 

( v is the speed, n the electron density, n+ the ion density, E the electric field) may be sought in the 
form 

v = e-1/1, v (z)· _!_ x E = e--111• s0 (z)· _!!_ = n 0 (z)· z = _::_ e111•, 
o ' m o ' n+ \ ' x(]l (2) 

where x0, t 0 are arbitrary constants. In order to elucidate the nature of this solution we make the sub­
stitution y = ln z and insert (2) into (1) after suppressing the index 0 of the functions v0, E 0, n0 : 

If y is now expanded into a series about some point x 1 , t 1 ( x = x 1 + ~; t = t 1 + T) and the term V0v is 
neglected the system (3) takes on the form: 

(v--V)v'=--z 1 ; s~=(w0x1 ) 2 (1-n); --Vn'+(nv)'=O: z1 =x1 sjx0 ; V=-X1 /l 0 • 

It describes a wave propagating with a speed V; the form of the wave 

. -1 n+ In -1 /r t( n+ )2 i]2 (X \ c1 + sm - J c2 - - - =w -- t I c2 2 n o V ; 

agrees with that foundby Akhiezer and Liubarskii1 ( c 1 2 are constants of integration). 
In the presence of an external homogeneous and con~tant magnetic field H (directed along the 

the equations assume the form (all quantities are independent of cp, z ): 

av, av, v! e ,, e 
at + v, """"(Jf- r =-mE- me v"' H; 

on f onrv, 
Tt+r(ff =O; 

In this case the following solution exists 

v = .!_ v0 ('-)· r ro r , , v = _!_ v0 (c)· 
cp 'o cp . ' 

E == .!_Eo(~); 
ro 

" t +I r ~=-, n-, 
o r o 

(4) 

(5) 

z axis) 

(6) 

(7) 

where the functions with the index 0 satisfy the system of ordinary differential equations obtained from 
(6) by means of the substitution (7). 

A similar solution exists also in the case when only Vx, vy, Ex differ from zero and all the quantities 
depend on x, t: 

OV X OVX e e 
-+v -=--E ----vyH· 0/ X OX m X me ' (8} 

on onvx 
¥+ ax-=O: 

In this case 

Ex= -~ £0 [:. + In ~], n = n° [ f + In : 0 J 

( Vx,y vary in a manner similar to Ex,y ). 
The system (8) also has solutions in the form of waves in which all the quantities depend on the differ­

ence x - Vt; integration of the system of equations obtained from the system (8) in this case gives: 

c,+osin-1 n+/;2-ll-J/ci-[~n:r-or=Vw~+il2 (~ -t). 3=(w~-Q2)/(wg+il2); il=eHfmc. (9) 

Solution (9) [ as well as (5)] becomes harmonic for II - n/n+ I « 1. One can therefore say that these 
solutions give the form of the wave of finite amplitude which arises when a wave is propagated in a plasma 
of slowly varying density n+ in the direction of small n+. 

·I thank M. A. Leontovich and R. Sagdeev for discussions. 
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IT is well known that so far no nucleon wave equation, even for the free nucleon, has been formulated. 
This is specifically due to the fact that the mass of the proton differs from that of the neutron. In this 
connection it is of interest to remark that the linearization of a second-degree wave equation leads in 
general to the equation 

(1) 

Here m0 and a are constants. Unfortunately, the mass operator M = m 0 exp ( ay5) does not commute 
with the Hamiltonian that follows from (1). We therefore generalize (1) in the following manner:* 

rrv a I axv- (mo c I h) I exp (2aT a)l cjl = 0. (2) 

The commutation relations for the operators rv, I, and T3 are determined by the following postulates: 
(a) the Hamiltonian, the spin-projection operator, and the third component of the isotopic spin, T 3, form 
a system of commuting operators; (b) the relation between momentum and energy has the usual form. 

This gives 

[I'v, ra]+ = 28va• [rv, T3 ]+ = 0, [T3 , /]+ = 0, (rv, /L = 0, TaT a= 1. II= 1. (3) 

As is well known, the components of the isotopic spin have to satisfy the commutation relations 

[T2, TaL= iT1, [Ta, T1L = iT2, [Tl, T2L =iTa. (4) 

The operators rv, Tk, and I have irreducible eight-by-eight representations: 

(5) 

Here Ok are two-by-two spin matrices; 1II and 1IV are two-by-two and four-by-four unit matrices 
respectively. The sign x denotes the direct product of the matrices. 

It follows from (2) that in the nonrelativistic limit the components of the wave function are character­
ized by the following quantum numbers. 

One sees from the table that the eigenvalue t3 = -! corresponds to a particle mass m 1 = m 0e-a and 
~ign of 

Component the Sign o 
of the sp~n the 
wave ·proJeC• renergy 

Junction tion 

<h + + 
<h -- + 
<Jia + + q,, - + 
o/s + -
q,, - -
q,, + -

<J!. - -

t, 

-'/2 
. -'/• 

'h 
1/2 . 

r/2 

'i• 
-'/• 
-'!. 

Particle 
rest mass 

moe-a· 
moe-a 
moe a 
moe a 
moe a 
moe a 
moe-a 
moe-a 

ta =! corresponds to a mass m2 = m 0ea. Taking m 0 = 1837.38 me 
(the average of the proton and neutron masses) and a= 3a/107r, then 
m 1 and m 2 are equal to the proton and neutron mass respectively 
within the experimental errors for these masses, 1 and (2) can be con­
sidered as the wave equation of the nucleon. 

It is easy to show that one can obtain from (2) two current vectors: 

(6) 

(7) 

The first can be interpreted as the specific nucleonic current ( K is the 




