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Using a simple model for the emission of nonrelativistic particles, the wave function of a sys
tem is constructed in the coordinate representation for real and virtual decay. It is shown that 
asymmetry in real decay of a polarized particle depends on the imaginary part of the vector 
coupling constant, and that asymmetry in the virtual decay and the dipole moment both depend 
on the real part of this constant. 

It is shown that elementary particles, which according to Landau have no dipole moment, re
semble the enanthiomorphic (optically active) molecules of organic chemistry, rather than mol
ecules in A -doubled states. 

A consistent description of particle production is developed in the coordinate representation. 
A convenient expression is presented for the virtual decay probability. 

THE assumption that parity is not conserved in weak interactions has led Lee and Yang1 to new conclu
sions with respect to the behavior of elementary particles possessing spin. These conclusions are the 
following. 

( 1) Asymmetry decay is possible, in which the emitted particles are directed primarily along or 
against the angular momentum of the decaying particle. 

( 2) An elementary particle may have a dipole moment, and this is also parallel (or antiparallel) to its 
angular momentum. 

As is well known, the first conclusion of Lee and Yang was brilliantly verified in experiments on the 
{3-decay of oriented nuclei2 and on J.l. mesons.3 The order of magnitude of the dipole moment they predict, 
however, is too small for experimental observation. Landau4 has given a complete theory relating parity 
nonconservation in charged-particle decay with space reflections.* . 

One of Landau's conclusions is that the dipole moment of elementary particles vanishes identically. It 
would seem at first that a decay asymmetry would lead necessarily to a dipole moment. Let us consider, 
for instance, a polarized neutron whose angular momentum is directed vertically upward. We may con
sider as established the fact that such a neutron decays by emitting electrons primarily in the upward di
rection. Let us now consider such a polarized neutron in the spherically symmetric field of a nucleus in 
which the energy relations are such that the neutron is stable and cannot decay. It then becomes possible 
an~ necessary for the neutron to undergo virtual decay, emitting an electron and capturing it again instan
taneously. We may speak of a cloud of virtual electrons about the nucleus. 

It would seem that asymmetry in real decay should correspond to a similar asymmetry in virtual decay. 
This would lead to asymmetry in the virtual electron cloud, and therefore to a dipole moment. Landau's 
work shows that such simple concepts are in general mistaken. t Ioffe6 (who has kindly communicated his 
work to the present author before its publication) has recently shown that the decay asymmetry and dipole 
moment depend on whether or not the theory is invariant with respect to time reversal. Essentially the 
matter reduces to the following. A linear relation between the momentum p of the emitted particle and 
the direction of polarization (spin direction) s of the decaying particle is possible in a theory invariant 
under time reversal, since both quantities change sign. A static dipole d, however, or the analogous sta-

*Lee and Yan!f have also independently indicated the possibility of combining space reflections with the 
transitions to the antiparticle. 

tNote added in proof (November 25, 1957). In the absence of a dipole moment, parity nonconservation 
leads to certain specific magnetic properties, as is shown by the author on p. 1531 of the present journal 
(p. 1184 of translation). 
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tic center-of-mass r of a virtual-particle cloud, does not change sign under time reversal. Therefore 
the spin s can be related to the static quantities d and r only in a theory which is not invariant under 
time reversal. 

Section 1 of the present article contains a coordinate-representation treatment of the emission of a 
nonrelativistic particle in the decay of a spin-! particle, assuming parity nonconservation. This example 
shows clearly the dependence of the decay asymmetry of a polarized spin-! particle on the phase of the 
coupling constants in the expression for the interaction leading to the decay. 

It is shown that in the first approximation the decay asymmetry depends on the imaginary part of the 
vector coupling constant, and that the dipole moment depends on its real part, so that there is no direct 
connection between the decay asymmetry and dipole moment. It is shown how the interaction potential 
can lead to asymmetric decay in the case of a real coupling constant, i.e., in the Ioffe-Rudik-Qkun' theory1 

(see assumption II of Ioffe6 ) • 

In Landau's theory charged particles are "odd." In molecular physics two types of odd phenomena are 
known. These are enanthiomorphic molecules (such as right and left tartaric acid) and diatomic mole
cules with A-doubling (such as a nitric oxide molecule with the projection of the election angular momen
tum on the axis directed from theN to the 0, or the same molecule with the angular momentum directed 
in the opposite way). Section 2 explains the properties of such molecules with respect to their decay 
asymmetry and dipole moment. It is shown that according to Landau's theory elementary particles are 
similar to enanthiomorphic molecules, rather than to molecules with A-doubling. 

In Sec. 1 it is found convenient to consider decay by treating the wave function of the produced particle 
in configuration space, rather than in momentum space. In Sec. 3 we show why it seems to us that this 
approach leads more simply and directly to the known formulas for the decay probability, without calcu
lating the level density in phase space. 

1. THE ASYMMETRY OF REAL AND VIRTUAL DECAY IN THE NONRELATIVISTIC MODEL 

Let us consider the decay A= B + C, where A and C have spin !, and B has spin 0. We shall de
note the states of A and C with Sz = ! by a, and those with Sz = -! by {3. t Let us assume that A 
and C are coupled by some spherically-symmetric potential field. We denote the wave function of A by 
X• and that of C by "'· We assume further that A and C are in a state with orbital angular momen
tum R. = 0. We denote the wave function of B by cp. Let m be the mass of B, and assume that the 
decay energy is small compared with mc2• 

Assume that in the initial state A is polarized with Sz = !, so that the state is ax. The wave func
tion of particles B and C in the final state consists of two terms, and can be written 

(1) 

each term of which corresponds to one of the two possible polarizations of C after decay. 
In nonrelativistic quantum mechanics there are two possible types of elementary interactions that do 

not involve the momenta of A and C. These are the scalar-and vector (derivative) interactions. In the 
theory of second quantization, the corresponding terms and the Hamiltonian density H are 

H' = glji~IJiciJi8 + hermitian conjugate, 

H" = N~a~Jic grad lj/8 +hermitian conjugate, 

(2a) 

(2b) 

where g and f are coupling constants, 1/JA., 1/J'B, and 1/Jc are creation operators for particles A, B, 
and C, and u is the spin operator. 

Previously, the requirement that H be invariant under space conversion has led to the conclusion that ( 
it cannot contain a sum of these expressions. We now know, however, that in weak interactions, in which 
parity is not conserved, it is exactly such a sum II'+ H" which must be considered. 

The corresponding equations for the wave functions of B are the inhomogeneous Schrooinger equa
tions (we set ti = 1) 

tin the case of real decay we can think of A as being a A particle, C a proton, and B a 11' m~son. 

For virtual decay, on the other hand, we may consider the original particle A to be a proton, C a. A 
particle, and B a meson, so that real decay is forbidden by energy considerations. 
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iarpd at=- 11 I 2m) ~'?1 + Vrp1 + gq + taq I az, 

iarp2 I at= - ( 1 I 2m) ~~2 + Vrpz + t (a I ax+ ia I ay) q, 

where V is the potential of the forces acting on B, and 

q = q (x, y, z, t) = X"''• = Q (r) exp {-- i (EA- Ec + MAc2 - Mcc2 - mc2) t}. 

(3) 

(4) 

(5) 

Equations ( 3)- ( 5) are written specifically for the decay of a polarized particle A in which the wave 
functions x and Tl are spherically symmetric, owing to the fact that I.= 0. In what follows it is also 
important that Q ( r) is real, which also follows from the fact that I. = 0. The energies E A and Ec do 
not include the rest masses. 

We seek a stationary solution in which the time dependnence of cp1 and CfJ2 is the same as that of the 
inhomogeneous terms involving q in ( 3) and ( 4 ), namely 

(6) 

Inserting ( 6 ) into ( 3 ) and ( 4), we obtain 

iarplat = E~ =--(112m)~~+· .. 

Decay is possible when E > 0, and then B parti<Cles are emitted with momentum p, where p2/2m 
= E. Far from the source, the solution should be a diverging wave cp "" eipr /r. 

If E < 0, real decay cannot occur. Virtual decay is described by a solution which decays exponen
tiallywithdistance,suchas e-Kr/r, where K2/2m=-E. 

Let us further simplify the problem, so that we may obtain an exact solution. We assume that the par
ticle produced has no forces acting on it ( V = 0) and that the region in which q is nonzero is small com
pared to the wavelength of B. Then for E > 0, we have 

rp1 = aeipr I r + b cos 6 d~ (eipr / r), rp2 = bei'P sin 6 :, (eiP'J r). ( 7) 

When pr » 1, 

rp1 = (eipr I r) (a+ ipb cos 6), cp 2 = (eipr I r) ipbei~ sin fJ. ( 7a) 

For virtual decay, when E < 0, we have 

h =a (e-><r I r) ..L b cos fJ _!:_ (e-xr I r) = (e-xr / r) [a- xb cos 6 (1 + ~)] 
' dr · xr ' 

rp2 = bei~ sin fJ _!!_ (e-"' I r) ,= - (e- '"') ei'Pxb sin 6 ( 1 + _ _!__ ). 
dr , ·xr / ( 8) 

In Eqs. (7) and (8) 

( 9) 

These expressions give information on the decay asymmetry and on the asymmetry of the virtual-parti
cle cloud when decay does not take place. It is charaeteristic that there appear two terms in the expres
sions for cp1: If particle A is in a state with I.= 0 :md Sz = + !, the final state in which C has I.= 0 
and Sz = + ! can have B both in the form of an S wave (with I. = 0) and of a P wave (with I. = 1 and 
lz = 0). It is the interference of the two terms of cp1 which leads to the terms linear in cos e, which are 
those of interest in that they are related to the direction of the angular momentum of the decaying A par-

\ ticle. Here e is the angle between the direction of polarization of A (the z axis) and the radius vector 
r. The wave function 'P2 corresponds to the decay of A with s z = ! to C with s z = -! and describes 
p•article B in the P state with I. = 1 and l.z = + 1. 

Since cp1 and CfJ2 belong to different orthogonal states of C [see Eq. ( 1) ], they do not interfere . 
.L,.et us find the flux of the B particles at large values of r. This is 

j = (1 12mi) (rp;V''PI- V''f'; ·'f'l + 'f';V''f'2- V''f;''f'2)= (p lr2m) [I a21 + P2 lbl2 +cos 6·ip(a*b-ab*)J. ( 10) 

For E < 0, we are interested only in the density p of virtual B particles, since at infinity the flux 
vanishef.l. This is 
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p = cp~ cp1 + cp;cp2 = r - 2 e-2'" [I a \2 + x2 1 b \2 ( 1 + 1 I xr )2 - x cos a ( 1 + 1 I xr) ( a• b + ab")]. ( 11 ) 

The fundamental result is contained in Eqs. ( 10) and ( 11), which show that there is no necessary rela
tion between the decay asymmetry and the asymmetry of the virtual-particle cloud; one of these depends on 
( a*b- ab* ), and the other on ( a*b + ab* ). 

Let us assume the scalar coupling constant g to be real, so that a is real. 
The decay asymmetry depends on the imaginary part of b, and vanishes if f is a real constant and 

b is real. 
If, on the other hand, f is imaginary, and therefore so is b, the decay is asymmetric although the 

term containing cos 8 vanishes in the expression for the virtual particle density; the virtual-particle 
density is therefore spherically symmetric, and there is no dipole moment. Imaginary f corresponds 
to the Landau case, and real f to the Ioffe-Rudik-Okun' case (Ioffe's8 assumptions I and II). 

If for real f we consider the projection of the C spin along an axis perpendicular to the z axis 
(which is the polarization direction of the initial A particle), it is easily seen that from the interpreta
tion of cp1 and 'P2 one obtains the relation Ioffe predicts between the vector product {SAx Scl and the 
direction in which particle B is emitted. 

We note that if we do not neglect the action of the potential on particle B, but assume it to be spheri
cal, the conclusion that there is no dipole moment if f is imaginary remains valid. This follows from 
the fact that in the equation obtained from ( 3) the real term gQ gives a spherically symmetric real so
lution, the imaginary term f cos 8 • Q' gives an imaginary solution proportional to f cos 8, and, as before, 
there are no interference terms proportional to cos 8 in the expression for the density. 

Although for real f there is no decay asymmetry in the absence of a potential and when the source is 
small, a decay asymmetry does appear when V ( r) is included. Then in the expression for the diverg
ing wave, the S-wave and P-wave phases shift by different amounts as and ap, and asymptotically 
when pr » 1 we obtain the expressiont 

cp1 =a' exp (ipr + irJ.s) I r + ip cos a ·b' exp (ipr + iocp) I r ( 12) 

and real b gives 

j ..... (p 1 mr2) [a'2 + p2b' 2 + 2a'b' cos a sin (ocs- ocp)J. ( 13) 

2. ODD MOLECULES 

Let us consider the decay A= B + C from the point of view of many-body quantum mechanics. We 
shall consider A and C to be systems (molecules) in eigenstates with the same angular momentum 
L. The systems consist, for instance, of nuclei and electrons whose spins we do not take into account, 
considering only the Coulomb interaction. ·The theory is invariant with respect to reflection in space, as 
well as with respect to the transformation of time reversal accompanied by the transition to the complex 
conjugate wave function according to Wigner. If the states A and C are only ( 2L + 1 )-fold degenerate 
in accordance with the possible Lz values for a given L, it is easily shown that neither for real nor 
for virtual decay will there appear terms linear in cos 8. 

In the usual case (I) in which the internal states of A and C are uniquely determined, the eigenstates 
Ao and C0 with angular momentum L are just ( 2L + 1 )-fold degenerate. In addition to this, we may 
consider enanthiomorphic moleeules (II) which may be either right-handed ( n) or left-handed ( L). We 
shall designate these states by An and AL respectively. Because spontaneous transitions between these 
states are possible, they are not, strictly speaking, eigenstates. During a time short with respect to the 
An~ AL transition time, however, An and AL may be treated as separate eigenstates. It is impor
tant only that the A= B + C decay itself not lead to a transition between An and AL. We assume that 

tin Eq. ( 12) a' and b' are proportional to g and f, respectively. The proportionality factors are 
real, but their expressions in terms of Q and dQ/ dr are not as simple as ( 9). In the absence of a po
tential, but with an extended source Q (r) and real g and f, there'is again no asymmetry. 

The quantities as and ap depend on the potential V ( r ) . They represent the phase shifts between the 
S and P waves of the regular solution of the homogeneous equation, and the free-particle S and P waves 

<¥s =sin pr I r, <jlp =cos e (cos pr 1 r- sin pr 1 pr2 ). 
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C occurs in two possible states, Cn and Cv and that the only transitions possible are An= Cn + B 
and AL = CL + B. 

Finally, certain diatomic molecules (III) with fix1ed nuclei may, in the ground state, have a nonzero 
projection A of the electron angular momentum on the molecular axis. States which differ only in the 
sign of A have the same energy. We shall denote these states by n and m, writing An and Am. We 
may consider the states An, Am, Cn, and Cm approximately as eigenstates in the same sense as we 
did with An, Av Cn, and CL. Case (II) may be called a static asymmetric molecule, and case (ffi) 
may be called a dynamic one. The symbol A now stands for the set consisting of A0, An, AL, An. 
and Am. 

Under a continuous rotation of coordinates in any of the three cases (I, II, or m ), a given state (A0, 

An, or An) with given values of L and Lz remains the same state (A0, An, or An) with the same 
value of L, but with a different Lz. Under time reversal the wave functions of A0 and An are trans
formed to their complex conjugates, but A+L is transformed into A_L , so that L remains invari-
ant, but Lz changes sign. z z 

Under a space L"eflection, A0 remains invariant, being nondegenerate, An is transformed to AL, 
An is transformed to Am, etc., and L and Lz remain invariant. 

As is seen from Sec. 1, the decay asymmetry and the dipole moment, which are of interest in the pres
ent case, depend on the interference of the S wave and P wave (with l = 1 and l.z = 0) of particle B. 
Two such waves can be obtained simultaneously in the decay A ( L, Lz) = C ( L, Lz) + B with equal values 
of L and Lz for particles A and C, with L " 0, 

Let us consider a Hamiltonian similar to (2a) and (2b), describing the decay A= B + C, and let us 
require that this Hamiltonian be invariant under coordinate rotations, space reflections, and time reversal. 
By treating continuous rotations under which states with different Lz transform into each other, one 
can show that the constant coupling A and C with the S wave of particle B cannot depend on Lz, and 
that the coupling constant for the P wave of particle B is proportional to Lz. The possible asymmetry 
between positive and negative directions along the axis is proportional to the polarization of A, or to the 
mean value of Lz. 

By treating space reflection, we see that in case I either the S-wave amplitude or the P-wave ampli
tude can be nonzero, and that these waves cannot interfere. This proves the impossibility of decay asym
metry and the absence of a dipole moment in an ordinary nondegenerate moleucle in an eigenstate of the 
angular momentum.* 

Time-reversal considerations can be used to show that in cases I and II the constant coupling A and 
C with the S wave of particle B must be real, and that for the P wave must be imaginary (we note 
that an imaginary f corresponds to a real coupling constant if one goes over from grad 1/JB to the mo
mentum operator, writing H" = 0' AC PB). 

It follows from this that enanthiomorphic (right-handed and left-handed) molecules also have no di
pole moment, as is the case for ordinary molecules and atoms; polarized and enanthiomorphic mole
cules, however, may have a decay asymmetry. 

In case m (A-doubling) time-reversal considerations lead to the conclusion that the P-wave coupling 
constant is real. As is well known, A-doubled molec:ules actually have dipole moments. It follows from 
Sec. 1 that in the first approximation there will be no decay asymmetry, although such an asymmetry will 
appear in the second approximation when one takes into account the interaction potential of B and C. 

Parity nonconservation in elementary particle interactions can be thought of simply as an internal 
asymmetry of the elementary particles. Landau's theory, which forbids dipole moments, shows that this 
internal asymmetry is of the static kind, rather than analogous to A-doubling. 

3. DESCRIPTION OF PARTICLE PRODUCTION IN CONFIGURATION SPACE 

In Sec. 1 the inhomogeneous Schrooinger equation was used to treat particle production, which is usu
ally treated by an expansion in eigenfunctions of the particle produced. In the absence of a potential, Eq. 

*By nondegenerate we mean that there is to be no degeneracy (as in case IT and m) greater than the 
(2L + 1)-fold degeneracy in the angular momentum. According to the usual terminology, the dipole mo
ment of a molecule such as HCl means the dipole moment with fixed nuclei, rather than in the free-rota
tion state treated by Yang and Lee, by Landau, and in the present work. 
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( 7) is analogous to the Born approximation. In scattering theory we write 1/J = 1/Jo + cp, where 1/Jo is the 
incident wave and cp is the scattered wave, and neglect Vcp (where V is the scattering potential), as
suming it to be a second-order term. We then obtain for cp the inhomogeneous equation 

iar,p I at = - (I I 2m) L1cp + Vtji0 • 

We may attempt to find a solution to this equation by a plane-wave expansion of cp, or by using a Green's
function method, writing 

The problem of particle production without taking V ( r) into account is entirely analogous to the first 
approximation of scattering theory. 

Let us now use the inhomogeneous Schrooinger equation to trE!at the problem of particle production in 
a potential field. This problem has no analogy in scattering theory. The equation is of the form 

iacpf at=- (I/2m) L1cp + Vr,p + q. (14) 

If q is the "source" in the equation for cp, then the equation 

ap a • ct· • + 1 ( • • ) -- =- <D <p = lV J -:- q<p - q <p at at · 1 
( 15) 

shows that its yield is proportional to qcp*- cfcp, which means that it depends on the phase difference be
tween cp and q. If Q and cp are both real, t no particles are produced. 

For simplicity, let us consider particle production in the S state. Let V (r) be spherically symmet
ric. The homogeneous equation has for I.= 0, a regular solution 1/J which is real, finite, at r = 0, and 
proportional to sin (pr + a )/r for pr » 1. The phase shift a is determined by the regularity condition 
and by the potential. To be specific, let us normalize by writing 

~1 =sin (pr +~X) I r for pr .3> 1. (16a) 

The second linearly-independent solution lfi2 of the second-order equation has a singularity at r = 0 
(singular solution). We shall choose it to make the Wronskian equal to unity: 

h =cos (pr +~X) I r for pr .3> 1, (16b) 

d d 
rtjl2 dr (rtjl1) -- rtjl1 dr (rtp2) = I for all pr. ( 16c) 

Let us now return to the inhomogeneous equation. Using q = Q ( r ) exp ( - iEt) and cp = cp ( r) exp ( - iEt) 
we obtain from Eq. ( 3) 

E<p +(!/2m) L1<p (r)- V (r) <p (r) = q (r). ( 17) 

As is known, the solution of ( 17) can be expressed by means of quadratures in terms of the solutions 
1/11 and 1/12 of the homogeneous equation. This solution is found quite simply using the Lagrange method 
of Eq. (6 ), since the equations for the coefficients Ct and c2 are in this case independent.8 We obtain 

r r 

<p = c1h + C2tp2 = tp1 (r) ~ Q (s) h (s)s2ds + tp2 (r) ~ Q (s) tp1 (s)s2ds. ( 17') 

The integrals of ( 17') determine c1 and c2 up to a constant factor. We apply the condition c2 ( 0) = 0 
to the coefficient of 1/12 (which means that we require the solution to be regular). The coefficient ljJ1 is 
determined from the condition that when pr » 1, the solution must represent a diverging wave, so that 
c1 ( oo) = ic2 ( oo). Thus the final solution in the form of ( 17' ) with the required properties is 

oo r oo 

2mcp = - ~1 (r) ~ Q (s) tjl2 (s}s2ds + tjl2 (r) ~ Q (s) tjl1 (s) s2ds + itjl1 (r) ~ Q (s) tjl1 (s) s2ds. (18) 
0 0 

For pr » 1, Eq. ( 18) gives 

t After eliminating the factor e-iEt. 
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<X> 

2mcp = + el(pr+aJ ~ Q (s) h (s) s2ds. 
I) 

From this we easily obtain an expression for the total particle flux (decay probability), namely 

J = ; M 2 , M = 47t ~ Qhs2ds = ~ QhdV. 

This is the same as the usual expression 

J = (2rrjto)M 2dN jdE, 

( 19) 

(20) 

(21) 

where M is the same matrix element as that given in (20 ), and dN/dE is the number of levels per unit 
energy interval. 

Let us form the expression 

(22} 

Inserting the expression for cp from ( 18) into this equation, we see that J involves only the imaginary 
part of cp, which is proportional to M. J 

The above derivation also shows why the decay probability involves the matrix element QI/J dV taken 

over the regular function ¢1 which is finite for small r; this matrix element remains finite even if we 
let Q approach a <'>-function. 

On the other hand, for small r and when Q = <5, the wave function cp of the produced particle will itself 
increase as r-1 if it is an S wave (and as r-l- 1 if l > 0 ), owing to the second term in (18). The 
question arises as to why the expression for the wave function does not enter into the matrix element. The 
answer is that particle production depends only on the imaginary part of cp (for a real source), and that 
only the real part increases as 1/r; as is seen from ( 18 ), the imaginary part is regular. 

The mathematical expectation value for the number of virtual particles is particularly simply obtained 
in the coordinate representation. This value maybe thought of also as the fraction {3 of the time that par
ticle A is in state B + C if there is not sufficient energy for real decay. For weak coupling this frac
tion is 

(23) 

where cp is a solution such as ( 18) (decaying exponentially for large r) of an inhomogeneous equation 
such as (17) with E < 0. A particularly simple expression is obtained if V(r) = 0. In this case we have 

(24) 

so that (23) can be written 

(25) 

We note that (25) does not contain r 12 in the denominator, so that the expression does not diverge as Q 
approaches a <'>-function. 

In the usual method of approach, nonrelativistic theory gives 

(26) 

It can be shown that Eqs. (23)-(25) are identical with the more complicated expression (26). 
In the decay of a free elementary particle A interacting with no other fields, the source Q becomes 

a <'>-function, and the potential V (r) describes the interaction of the decay products B and C with each 
other. 
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We consider the normal and the anomalous skin effect in ferromagnetic metals under condi
tions of ferromagnetic resonance. The constant magnetic field is taken to be perpendicular to 
the surface of the sample. The influence of exchange effects on the resonance line width and 
on the shift of the resonance frequency is taken into account. 

I. Ferromagnetic resonance absorption is observed when the frequency of the electromagnetic field in
cident on the surface of the ferromagnetic is nearly equal to the eigenfrequency of the precession of the 
magnetization vector M around the direction of the magnetic field H. This effect is described by the 
equation of motion of the magnetization vector M (Ref, 1) in a certain effective magnetic field, 

_!_oM=Mx(H+ 2AV2 M-.1._ MxH). (1) 
y ot M! M 8 

The first term on the right-hand side of ( 1) is the true magnetic field inside the specimen. The sec
ond term is the effective field due to exchange forces caused by the inhomogeneity of the magnetic moment 
M, and the third term is a relaxation term that describes the approach of the magnetization M to an 
equilibrium position along the field H; y is the gyromagnetic ratio, and Ms the saturation value of the 
magnetization. 

The relaxation term was introduced by Landau and Lifshitz 1 for a phenomenological description of 
damping processes. Up to the present the physical meaning of this term is not completely clear, since 
all existing theories lead to values of the dimensionless constant {3 that are rather low compared with ex
periment. In most cases, however, such a term gives a fairly good description of the experimentally ob
served effects that are connected with relaxation. 




