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The angular distributions and polarizations of electrons (or positrons) from the 8-decay of
oriented nuclei are calculated for allowed transitions with inclusion of effects of the noncon-
servation of parity.

RECENTLY conducted experiments! have confirmed the hypothesis of Lee and Yang? that parity is not
conserved in weak interactions. In a paper of Landau® the idea has been put forward that the Hamiltonian
of the weak interactions is invariant with respect to combined inversion, i.e., with respect to two opera-
tions carried out in succession — inversion of space and charge conjugation (despite the possible non-in-
variance of the Hamiltonian in question with respect to each of these operations individually). The invar-
iance of the theory with respect to combined inversion leads in particular to the reality of all the constants
in the interaction of B-decay.

In the present paper we determine for allowed transitions the B-neutrino correlation, the angular dis-
tribution, and the polarization of the electrons (or positrons) produced in the f-decay of oriented nuclei.
In doing this we make no preliminary assumptions about the real or imaginary nature of the different in-
teraction constants. Therefore the formulas obtained may turn out to be useful for clearing up the ques-
tion of the existence of invariance with respect to the combined inversion.

The most general expression for the Hamiltonian of the B-interaction in the case of nonconservation of
parity has been given in Ref. 2. It has the form :

H = (5 7ubn) (Csberabs + st 1arsthy)
+ (b7 1etudn) (o tutudy + CliTatutsd) + o (5 1a0rdn) (Crderaonndy + Crbd aomnnrsth)
+ (4 a1 T89) (—Cabd T Ted — Cab 1a1uh) + (45 1076a) (Cobd a5 + Cpp vuy) + Hermitian conj. (1)
Since in the following we consider only allowed transitions, in the calculation of the matrix elements
we can neglect the pseudoscalar interaction and replace the wave functions of the electron (or positron)
and antineutrino (or neutrino) by their values for r — 0.
For definiteness let us first consider electron emission. The wave function of an electron moving in

the Coulomb field of the nucleus and having at infinity the momentum p and the polarization p is de-
scribed by the wave function

m . de iy CPIT ()|
bpu = 8 V—Zneilg (v, Qim(p))it—te —*TW_;T—(QP’)YH“

i l/% + 1 Re[e—"“’"“ﬂ’ (vt F (1400, 21+ 1;2ipr)]9izm(r) ,

¥
VFE — lm [e“i(p'_"”) (tit ) F (v 14009, 270+ 15 Qil”)] Qjurm(r) (2)

Here we have used the notations adopted in the book of Akhiezer and Berestetskii® [in this usage vy isa
normalized two-component spinor, (v;';, Vu) =1]. At infinity the function d)pu has the form of the su-

perposition of a plane wave and a converging spherical wave and is normalized to unit amplitude of
the plane wave. For r —0 one keeps in the sum over j and £ in Eq. (2) only the two terms with

j=% and £=0,1, and sets r =0 everywhere except in the factor (2pr)Y~!, where vy, =(1- 72%2)1/2,
Then we get
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{[(1 +l 1+ Ztize) 1— _'e"_] +
+ [(To— 1) V/l 4 —'—:— +iZe? Vl — —'el] (en,) (qnp)} v, (8)
[(To— ) V/:':: + iZe? 1/ 14 _:‘] (on,) +

e+ 0 1= 2 4ize Y 14+ 2] @) o )

T (Yo + iv) €F¥/2im(re—1)I2
bon =

o—1
% V2T (2y,+ 1) (Zpry

(3)

where nr and np are unit vectors in the directions of r and p. In allowed transitions there is no
change of the parity of the nuclear state, and therefore those terms in Eq. (3) which contain the factor
nr contribute nothing to the matrix elements of the transitions in question. Dropping them and making
the usual replacement of (2pr)Y0~! by (2pR)Y0"! (R is the radius of the nucleus), we can rewrite Eq.
(3) in the following way:

Pou = fupy (8), (4)
where

f= V2T v I (vo + iv) €72 (e DI2
T2y, +1)

and u&(l;‘) is a spin function (¢ is the spin variable ) which has the form

(2pR)™, (5)

av,
b(en,)-v,

Upy () =

' (6)

o= =t DY 1+ 2 rize Y 1- 2], b=2V11TYo[(TO——1)]//1——';+i2e2‘/l+—:iJ. )

For the wave function of a free electron with momentum p and polarization p we have at r =0 the ex-
pression

o a,v
3=y oy ®)
o= VIRTTF TS, bo= VT AToY (9)

In analogy with Eq. (8), the function ¥, corresponding to the production of an antineutrino with mo-
mentum ¢ (and mass zero) has at r =0 the form

“w = 77| (el (10)
The B-decay matrix element in which we are interested can now be written in the following way:
M = f (u5,0ug), (11)
where
0 = A[1{Cs 4 Cs1s)+(Cot Cots)l—iBly (Cr1s+C7) 141 (Cats+Ca)], (12)
A= Sl{f}\lf,dc, B =g oW dv, (13)

and ¥; and ¥; are the initial and final wave functions of the nucleus.

To calculate the probability of the decay we must sum the square of the absolute value of the expression
(11)over the spins of the electron and antineutrino. This summation is easily carried out by means of the.
matrices N and P,

N = Dtiqy (1) tigy (1), Prer = D tigu (8) 5 (¥) (14)
v w
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and gives

IMP=|f 2 (uppOuqy) (g0 uss,) = | 2 Sp (ONO* P); (15)
(23] By

N is the usual projection operator
N (@) = —iqra/ 2. (16)
By means of Egs. (6) and (7) it is not hard to obtain also the explicit expression for the matrix P:

|a|2 ab'en,
" la‘ben, (b2

m—zp

= Ta+ 5 (Yo — 1) + Ze*nyl. | (17)

We finally get for the differential probability of the f-decay (in units mc?/hi) the expression
N{p. —)—d—E—dQ,dQV_F( Z,-2)Sp (ONO™P) (2rm) 5ps (s5—¢)* dsdQud ., (18)

where the bar over the factor denotes averaging with respect to M and summing over M, these being
the magnetic quantum numbers of the initial and final states of the nucleus, respectively; €, is the max-
imum energy of the electrons; and F(Z, €/m) is the usual notation for the function which includes the
influence of the Coulomb field of the nucleus:®

F(Z, ¢/m) =P (19)

To calculate the polarization of the emitted electrons we introduce the density matrix

p (&)= Q 2 up(®) (i (n) Onyts () (s (€) Oeri§ (1)) 8 (¥) - (20)

BAR

Q is a constant to be determined from the normalization condition Spp = 1. We further define the ma-
trix R:

Ren = D up (8) uyy (). (21)

By the use'of Eas. (6)—(9) we find
_ 1/ nFim—ipy _Ze
R=Y 2ty i 2o o —m)]. (22)

It is not hard to verify that R*R = P, and therefore the correctly normalized matrix p can be written in
the following form:

p = RONO*R* |Sp (ONO*P). (23)

If we do not prescribe the direction of emission of the neutrino, then we must proceed further to aver-
age the numerator and the denominator in Eq. (23) over the direction of q. We then get for the density
matrix

o= S (RONO'R*)dQ, / SS_p (ONO*P) dQ,. (24)

On the other hand, the general expression for the density matrix p describing the polarization properties
of the electrons moving with the momentum p has the form®

o= (1 +itsl) (m —ip) 14/ 4e. (25)

The four-vector &, = (&, &) satlsfles the condltlon Eubp = 0. Therefore in a system of coordinates in
which p =0, we have ¢, =0, i.e,, § = (L‘ 0). Consequently, the polarization properties can be defined-
as is usually done, by means of the three-d1mensiona1 vector ¢’ connected with ¢ by the relation

=0+ (m/e)%s (26)
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where &t and ¢y *are the tran.sverse and longitudinal components of the vector ¢. Equations (24) and
(25) give

G = -SP (¢1aTate) = - | Sp (RONO'R¥s151,) d, [(Sp(ONOP) dar,. (27)

The further calculation of the angular distributions by means of Eqs. (12), (13), and (16) — (18) and
of the polarization of the electrons by means of these same equations and Eqs. (26) and (27) is carried
out in the usual way. Therefore we at once give below the results of these calculations for the three types
of allowed transitions, J' =J, J # 1 for both the electron and the positron decays * Here we have intro-
duced, in addition to the usually accepted notations, % also the following: n, =q/q, and j is the unit vec-
tor in the direction of orientation of the nuclei. In what follows the index zero is omitted from the quan-
tity yp = (1 — Z2%?)1/2,

I. Correlation of directions of the g particle and the neutrino

N (p, ny) dW dQ, dQ,= (2=)™5F (£ Z, W) (W2—1)'s W (W,—W)2dW dQ.dQ,
I .
X {l + (al + VZ_Z%) (veny) + 'I%' + -7 [(v, + % Cz) (jve)

+ (4 ) (1) + (&1t 2 e ) G v [+ (72 + e F) (5 v — e D) (1 = 55} (28)
Here
E=(Crf" +|Crf" +1Ca P+[Ca )| Mor ' +(ICsP*+|Cs [ +|Cv F +1Cv[) | Me P,
af =5 (|CrP+1Cr —|Ca = |Ca[)| Mor F— (ICs ' +1C5 [ — | Cv [P — | CV ) | M %,

af = + [— = Im (CaCr -+ C4CT) | Mot [ + 21m (CyC5 + CVCS) | My 1,

be + +2T [Re (CTCA + CTCA)[MC,T I 4+ Re (CsCV + CsCv) ] MF| 1,

o = £ 2Re (C1CF — CaCR) | Mar Pesr +2 I 7y Re [(CrCS + C7Cs — CaCl — C4Ch) MMl

JT+1

¢ = 2Im (CrCy + CrCa)| Mor \esy +2 V J Im [(C1CY + CrCy — CaCs — C1Cs) MyMgr]

dit = - 2Re (C;CT + CaCl) | Mar Peryr — 2 ]/ Re [C7Cs + C7Cs 4 CaCy + CaCy) MrMarl,

TF1

dsF = - 2Re (CrClr + CrCa) | Mot e —2 7 Rel(C1CY + CCh + CaCs + CACS) Mi-Morl,
gE=2 V'% Im [(C1C5 + CyC's — CaCl— CACy) MiManl,
gt = T2/ T Re((CrCh + CiCT — CaCi — CACS) MiMonl.
fiE=(ICr[® + [Cr P —|Cal? — |Ca )| Mar[PAsss, fof =7F 2Im (CaCr 4 CACT )| Mar Ay,

The upper signs refer everywhere to the electron decay, and the lower signs to the positrondecay. The
functions €33’ and Ajy’ are defined by the relations

1 . r___ — 3 G
m ]'.f ‘I“'le J+11’ ]..f J,—J)
ey = 1, lf J =J~-—1, A_/jl= m, if J =J—-‘1, (29)
J e o I e o
_my if J—-—J—f-l, m,lf J—J+1

*The formulas for the positron decay are obtained from the corresponding formulas for the electron
decay if one makes in the latter the following replacements: (1) CS, C A; Cp, Cy, C-g by CS, oy As Cp,
CY, Cf; (2) Cg, C'as Cp, Cy» Cp by —-Cg, =C%, -CPE, —-C¥{, -C%; and (3) e by —é’
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3<3%> _

For unoriented nuclei J,>=0 and 1 — ——‘2
rien uclei <J,> n T+ 1)

In virtue of the invariance of the Hamiltonian for the strong interactions with respect to time reversal,
the product M’%MGT is real," i.e.,

My-Mor = | Mr|-| Mor |. (30)

It must be pointed out that the term (Ze?/Wve)a, (Veny) in the curly brackets of Eq. (28) is omitted
through an error from Eq. (A.2) of Lee and Yang’s paper.?

II. Integration of Eq. (28) over all angles of emission of the neutrino gives the angular distribution of
the electrons (or positrons)

N () dWdQ, = o= (1+ ) F(Z, W) (W2 — 1% W (W, — W)%aW (1 + a.cos9), (31)

¥ is the angle between vg and j, and

<Jp ¢y +cy,Ze? | Wo,

a=T—er. (32)

For the transitions J -J —1 and J —J +J Eq. (32) gives results identical with those obtained in
Eas. (A.6) and (A.7) of Ref. 2.

II. The general expression for the polarization of the electrons (or positrons) of energy W emitted
at the angle & with the direction of orientation of the nuclei has the following form:

=14 8+ Lot s o coso]| (o + m e

—(v/W)K J
1 (Y/ W) Z <Z> } (33)

+ g —, T cos ) v+ (Bl . —> 7 J+("h-|—*(2 Wv) —F i, vl
= 4 2[Re (CrCT — CaC2) | Mar [* + Re (CsCS — CyCy) | M P,
o = 2 [Im (C;CA + C7Ca) | Mot [* + Im (CsCv + CsCv) | Mk [,
ay = (|Cr P+ |Cr[* +Ca '+ [Ca T 2Re (C1Ch + CIC] | Mo Pesr +2 )/ % {4 Re [(C+C5

+ CrCs + CaCy + CaCV) MrMgr] — Re [(CrCy + C7CY 4 CaCs + CaC's) MrMarl},

J+1

e

B, = -+ 2Re (CrCi + C7CA) | Mo [es + 2 V = Re [(CrCy + C1Cy + CaCs + CACS) MeMarl,,

By = {(|Crl2 +1Cr P+ {Cal +{Cal) | Mor Pessr 4 2 l/J+1 Re [(C1Cs + C1Cs + CaCy +CACV)MFMGT]}v
11 =4 21Im (CCa + C1Ca) | Mot [Pesr +2 V ﬁ Im [(CrC'y + CTCYy — CaCs — CaCs) MrMorl,

ta = —2Re(CrCT — CaCr) | Mor [Pesr F 2 V 7riRe [(CrC’s 4+ C7Cs — CaCy — CaCY) MyMorl.

If the neutrino is a longitudinal particle,%® then we should put C' = —C in all the formulas.

I express my gratitude to A. Z. Dolginov for a discussion of the results of this work.
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Various possible direct variational methods for the determination of the phase shifts of the
radial wave function are considered. It is shown that the most natural criterion of the qual-
ity of the trial function is the condition of the consistency of the equations. The comparison
of the phase-shift results obtained by the Hulthén and Kohn methods, and the verification of
whether the integral identity is satisfied, are not independent criteria and in fact reduce to
the consistency condition. It is also shown how the correct value can be chosen from two
phase-shift values obtained by the Hulthén method, without resorting to comparison with the
results of other methods.

\;VE consider the equation for the phase shift in collision theory:
7 (r) + (B —=V)d(r)=0; (1)
$0)=0, o~ Asin (kr + 7). (2)
The variational principle for this problem can be written in the form!

L--]

o =3{ ¢ (G +#—V)p(rdr = — A%, (3)

If we substitute in this functional an approximate function 7/) (r) which satisfies the conditions (2) and
which depends on the parameters @, we can obtain equations for these parameters from the variational
principle. It is well known that, in contrast to the problem of the discrete spectrum, the set of equations
can be formed in this case, in a non-unique fashion.

We consider the very simple but also very important case in which a linear combination of n. functions
@j (r) are substituted in the functional J:

F) =2 g, (). (4)

In this case, let





