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The angular distributions and polarizations of electrons (or positrons) from the ~-decay of 
oriented nuclei are calculated for allowed transitions with inclusion of effects of the noncon
servation of parity. 

RECENTLY conducted experiments 1 have confirmed the hypothesis of Lee and Yangl that parity is not 
conserved in weak interactions. In a paper of Landau3 the idea has been put forward that the Hamiltonian 
of the weak interactions is invariant with respect to combined inversion, i.e., with respect to two opera
tions carried out in succession- inversion of space and charge conjugation (despite the possible non-in
variance of the Hamiltonian in question with respect to each of these operations individually). The invar
iance of the theory with respect to combined inversion leads in particular to the reality of all the constants 
in the interaction of ~-decay. 

In the present paper we determine for allowed transitions the ~-neutrino correlation, the angular dis
tribution, and the polarization of the electrons (or positrons) produced in the ~-decay of oriented nuclei. 
In doing this we make no preliminary assumptions about the real or imaginary nature of the different in
teraction constants. Therefore the formulas obtained may turn out to be useful for clearing up the ques
tion of the existence of invariance with respect to the combined inversion. 

The most general expression for the Hamiltonian of the ~-interaction in the case of nonconservation of 
parity has been given in Ref. 2. It has the form 

H = (lJitT4lJin) (CslJitT4lJiv + C~lJih•TslJiv) 
+ + '+ 1 + + '+ + (lJipT4Tp.lJin) (CvlJie T4Tp.lJiv + CvlJie 14TP.TslJiv) + /2 (ljlpj40";>.p.ljln) (Cr,P. "[40";>.p.ljlv +C~e T40";>.p.j:;lJiv) 

+ (lJitT4TP.TolJin)(-CAlJi;;f"141P.15lJiv -C~lJI:T4TP.~) + (lJitT4T5lJin) (CplJI:T41s'~v + C~lJI;;f"T4lJiv) +Hermitian conj. ( 1) 

Since in the following we consider only allowed transitions, in the calculation of the matrix elements 
we can neglect the pseudoscalar interaction and replace the wave functions of the electron (or positron) 
and antineutrino (or neutrino) by their values for r - 0. 

For definiteness let us first consider electron emission. The wave function of an electron moving in 
the Coulomb field of the nucleus and having at infinity the momentum p and the polarization J.L is de
scribed by the wave function 

( 2) 

Here we have used the notations adopted in the book of Akhiezer and Berestetskii4 [in this usage vJ..I. is a 
normalized two-component spinor, (v~, vJ..I.) = 1 ]. At infinity the function 1/JpJ..I. has the form of the su
perposition of a plane wave and a converging spherical wave and is normalized to unit amplitude of 
the plane wave. For r -0 one keeps in the sum over j and I in Eq. ( 2) only the two terms with 
j = l and I= 0, 1, and sets r = 0 everywhere except in the factor (2pr )'Yo- 1, where 'Yo = ( 1- z2e2 ) 112• 

Then we get 
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{[(I + 1 0) Vi+-~ + iZe2 V 1 - ~ ] + 

+ [(r0 - 1) J/.r 1 + :- + iZe2 v 1- :1 (an,)(anp)} Vp. (~) 

{[<To- 1) V/ 1- -': + iZe2 ~/1 + ;-]<an,)+ 

+[<ro + 1) V 1- 7 + iZe2 V 1 + ; ] (anp)} vp. (~). 

( 3) 

where nr and np are unit vectors in the directions of r and p. In allowed transitions there is no 
change of the parity of the nuclear state, and therefore those terms in Eq. ( 3) which contain the factor 
nr contribute nothing to the matrix elements of the transitions in question. Dropping them and making 
the usual replacement of (2pr)'Yo-t by (2pR)'Yo-t (R is the radius of the nucleus), we can rewrite Eq. 
( 3 ) in the following way: 

(4) 

where 

f - V2 (1 +Yo) r (Yo+ iv) e"•i2e1" (y,-1)12 (2 D)Yo-1 
- f (2y0 + 1) p" . ' (5) 

and u~ ( ~ ) is a spin function ( ~ is the spin variable ) which has the form 

(6) 

a= v 1 [<ro + 1) v' I+ m + iZe2 VI-~]' b = v 1 [(ro- 1) Jt/1 -- m + iZe2 v 1 + m]. 
2 1 +Yo e £ 2 1 +Yo e £ 

(7) 

For the wave function of a free electron with momentum p and polarization p. we have at r = 0 the ex
pression 

(8) 

(9) 

In analogy with Eq. ( 8 ), the function 1/Jv corresponding to the production of an antineutrino with mo
mentum q (and mass zero) has at r = 0 the form 

1 I v. I 
Uqv = y2 ((aq)jq)v. · 

The ,B-decay matrix element in which we are interested can now be written in the following way: 

where 

M = f (u~~Ouqv), 

0 =A [j4'(Cs + C~r5)+(Cv+ C~ls)]-iB[r (Cns+C~) +i4i (CAid-C~)), 

A = ~ 'l"j'Y1d't, B = ~ lirjaW1d't, 

and iii and i'f are the initial and final wave functions of the nucleus. 

( 10) 

(11) 

( 12) 

( 13) 

To calculate the probability of the decay we must sum the square of the absolute value of the expression 
( 11) over the spins of the electron and antineutrino. This summation is easily carried out by means of the, 
matrices N and P, 

(14) 



BETA-DECAY OF ORIENTED NUCLEI 

and gives 

N is the usual projection operator 

By means of Eqs. ( 6) and ( 7) it is not hard to obtain also the explicit expression for the matrix P: 

We finally get for the differential probability of the ~-decay (in units mc2/ti) the expression 

N ( p, .9_) ~dQ,dO.=F( z.-=-) Sp (ONO+P) (27tmf5pe (e0-s)2 dsdf!edO., 
\ q m \ m 
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(15) 

(16) 

(17) 

(18) 

where the bar over the factor denotes averaging with respect to M and summing over M', these being 
the magnetic quantum numbers of the initial and final states of the nucleus, respectively; Eo is the max
imum energy of the electrons; and F ( Z, E/m) is the usual notation for the function which includes the 
influence of the Coulomb field of the nucleus:5 

F(Z, sfm) = lfl2 • ( 19) 

To calculate the polarization of the emitted electrons we introduce the density matrix 

p (~, n = Q ~ U~(~) (u~• ('1)) 011TI'Uv (1J')) (u: (C) Q~,U~ (~')) uf (~'). (20) 
1'-AJ.L 

Q is a constant to be determined from the normalization condition Sp p = 1. We further define the ma
trix R: 

(21) 

By the use of Eqs. (6)- (9) we find 

R = y'Yo + 1 (m-lp) Y•[t-i Ze2 (s _ m"' >]· 
2 2e: (Yo + 1) p 14 (22) 

It is not hard to verify that R-Ta = P, and therefore the correctly normalized matrix p can be written in 
the following form: 

(23) 

If we do not prescribe the direction of emission of the neutrino, then we must proceed further to aver
age the numerator and the denominator in Eq. (23) over the direction of q. We then get for the density 
matrix 

(24) 

On the other hand, the general expression for the density matrix p describing the polarization properties 
of the electrons moving with the momentum p has the form6 

(25) 

The four-vector !;J.L = ( t. to) satisfies the condition tJ.LPJ.L = 0. Therefore in a system of coordinates in 
which p = 0, we have to = 0, i.e., t~ = ( t 0, 0 ). Consequently, the polarization properties can be defined· 
as is usually done, by means of the three-dimensional vector 1;0 connected with I; by the relation 

~0 =~t+(mjs)~z, (26) 
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where l:t and l:l. •are the transverse and longitudinal components of the vector t;. Equations ( 24) and 
(25) give 

(27) 

The further calculation of the angular distributions by means of Eqs. ( 12 ), ( 13 ), and ( 16)- ( 18) and 
of the polarization of the electrons by means of these same equations and Eqs. ( 26) and ( 27) is carried 
out in the usual way. Therefore we at once give below the results of these calculations for the three types 
of allowed transitions, J' = J, J ± 1 for both the electron and the positron decays.* Here we have intro
duced, in addition to the usually accepted notations,2•5 also the following: nv = q/q, and j is the unit vec
tor in the direction of orientation of the nuclei. In what follows the index zero is omitted from the quan
tity Yo = ( 1 - z2e2 )t/2. 

I. Correlation of directions of the [3 particle and the neutrino 

N(p,n.)dW dfl.dflv= (27tf5~F (:f:Z, W')(W2-l)'l• W (W0-W)2d\VdQ.dQ. 

(28) 

Here 

1 2 , 2 2 , 12 2 1 2 1 c' 2 1 c 
1
l. 

1 
• 12 2 

at~= 3 (I Cr I +! Cr I -I CA I -I CA ) I MGT I - ( Cs I + 1 s I - v '- Cv ) IMp I , 

2 * I I* r 2 • I 1* 2 
a2~ = + [- 3 Im (CACr + CACr) I MGT! + 2 Im (CvCs + CvCs) IMp I], 

b'; ± + 2r [Re (CrC~ + C~C~) I MGT 12 + Re (C:sC~ + c~c'~) I MFI2J, 

I* I • . 2 ,-~- I* I • ,. f • • 

d2c = ± 2 Re (CrCA + CrCA) I MoT 1 EJJ• -2 V J + 1 Re [(CrCv + CrCv + CACs + CACs) MFMGT]. 

gl~ = 2 J/ J ~ 1 Im [(CrC; + C~c;- CAC~- C~C;) M;MGT], 

g2e = +2 ( 1 ~ 1 Re r~crc~ + c~c·~- cAc;- c~c~·) M;MGTJ· 

[Ie =(I Cr 12 +I c~ 12 -I CA 12 - I c~ 12) I MoT I2Ll;p, f2E = + 2 Im (CAc;. + CA.c;) I MoT I2Ll;p. 

The upper signs refer everywhere to the electron decay, and the lower signs to the positron decay. The 
functions EJJ' and t..JJ' are defined by the relations 

j /~1 
EJJ' = -~ 

/+1' if J' = J + I, 
Ll;;• = j~~:: : 

2J+ 3' 

J' =J, if J' = J, 

if J' = J --I, J'=J--1, 
(29) 

J' = J +I. 

*The formulas for the positron decay are obtained from the c()rresponding formulas for the electron 
decay if one makes in the latter the following replacements: ( 1) Cs, C A• Cp, Cy, c;, by Cg, cl, Cp, 

'* '* ' ·' ' '* ''* '* * c* d < 3 > -l b 2 Cy, CT; (2) c 8, CA, Cp, Cy, CT by -Cs, -CA, -Cp, -Cy, - T; an e y -e. 
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For unoriented nuclei < J~ > = 0 and 1 - 3 < Ji > = 0. 
J (J + 1) 

In virtue of the invariance of the Hamiltonian for the strong interactions with respect to time reversal, 
the product MFMGT is real, 'l i.e., 

M~·MoT =+IMFI·!MGTI· (30) 

It must be pointed out that the term ( Ze2/Wve) ~ (venv) in the curly brackets of Eq. (28) is omitted 
through an error from Eq. (A.2) of Lee and Yang's paper.2 

IT. Integration of Eq. ( 28) over all angles of emission of the neutrino gives the angular distribution of 
the electrons (or positrons) 

1;, ( b N (p) dWdO. = 8,.. I+ W )F(+Z, W) (W 2 - 1)'1• W (W0 - W)2dW ·(I+ occos&), (31) 

~ is the angle between Ve and j, and 

(32) 

For the transitions J - J - 1 and J - J + J Eq. ( 32) gives results identical with those obtained in 
Eqs. (A.6) and (A.7) of Ref. 2. 

m. The general expression for the polarization of the electrons (or positrons) of energy W emitted 
at the angle ~ with the direction of orientation of the nuclei has the following form: 

lXI = + 2 [Re(Crc;- cAc'~) I MoT \2 + Re (Csc;- CvC~) IMp 12], 

Ol:z = 2 [lm (CrC~ + C~C~) I MoT \2 + Im (CsC'~ + c:SC~) I MF I~J. 

01:3 = [\ Cr \2 +I c~ 12 +I CA \2 + I c~ 12 + 2 Re (CrC~ + C~C~)ll M'GT \2EJ}' + 2 Jl J ~ 1 { + Re [(CrC~ 

+ c~c~· + c~c'~ + cAc';,) M;MOTJ - Re [(c,c';, + c~c'~ + cAc~ + c~c'~) M~MoT]}, 

12 = -2 Re (Crc';- CAC~) I MoT \2ti:JJ' + 2 v J ~ 1 Re [(c,c; + c~c;- CAC~- C~C';,) M;MoT ]. 

If the neutrino is a longitudinal particle,8•9 then we should put C' = -C in all the formulas. 
I express my gratitude to A. Z. Dolginov for a discussion of the results of this work. 

(33) 
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Various possible direct variational methods for the determination of the phase shifts of the 
radial wave function are considered. It is shown that the most natural criterion of the qual
ity of the trial function is the condition of the consistency of the equations. The comparison 
of the phase-shift results obtained by the HultMn and Kohn methods, and the verification of 
whether the integral identity is satisfied, are not independent criteria and in fact reduce to 
the consistency condition. It is also shown how the correct value can be chosen from two 
phase-shift values obtained by the Hultben method, without resorting to comparison with the 
results of other methods. 

WE consider the equation for the phase shift in collision theory: 

lji' (r) + (k2 -- V) lji (r) = 0; 

lji (0) = 0, lji lr~o> ~A sin (kr + 'rj). 

The variational principle for this problem can be written in the form 1 

0> 

BJ = 8 ~ 1ji (r) c~: + k2 -- V)~J~ (r)dr =- NkB'YI· 
0 

(1) 

( 2) 

(3) 

If we substitute in this functional an approximate function "$ ( r) which satisfies the conditions ( 2) and 
which depends on the parameters O!i• we can obtain equations for these parameters from the variational 
principle. It is well known that, in contrast to the problem of the discrete spectrum, the set of equations 
can be formed in this case, in a non-unique fashion. 

We consider the very simple but also very important case in which a linear combination of n. functions 
<Pi ( r ) are substituted in the functional J: 

n 

~ (r) = ~; cxl<pl (r). (4) 
1=·1 

In this case, let 




