
SOVIET PHYSICS JETP VOLUME 6 (33), NUMBER 6 JUNE, 1958 

THEORY OF CYCLOTRON RESONANCE 

E. A. KANER 

Radiophysics and Electronics Institute, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor June 28, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1472-1476 (December, 1957) 

The possibility of cyclotron resonance is studied for a metal in a magnetic field which is in
clined to the surface. The surface impedance for a metal in a magnetic field parallel to the 
surface is calculated for an arbitrary law of reflection of electrons from the surface. 

1. INTRODUCTION 

AzBEL' and the present author1- 3 worked out the theory of cyclotron resonance for the case of a metal 
in a magnetic field parallel to the surface, assuming the reflection of electrons from the surface to be 
purely diffuse. When the magnetic field is parallel and the dispersion law is quadratic, all the electrons 
in the top layer of the Fermi distribution contribute to the resonance, since they all have the same orbital 
revolution frequency Q and they all pass many times within the skin depth. When the dispersion law has 
a more general character, only electrons with an extremal value of effective mass contribute to the reso
nance, and the relative depth of the resonance is then smaller than for a quadratic dispersion law. In an 
inclined magnetic field the great majority of electrons enter the skin depth only once, after which they dis
appear into the interior of the metal, and they therefore do not contribute to the resonance. However, 
Chambers' pointed out that, in a magnetic field inclined at a considerable angle 4> to the surface, a reso
nance can still be produced by the minority of electrons which have vH ~::: 0 and therefore return to the 
skin layer many times without drifting along the direction of the field. The bar over vH denotes an aver
age along the path of an electron with E(p) = t;, PH= const. Here E is the energy, p the wave vector, 
v = 8E/ap the velocity, t the chemical potential of an electron. PH and vH are the projections of p 
and v along the direction of the magnetic field. 

We showed earlier2•3 that to the lowest order in ( c5eff/r) the surface impedance Z of the metal is in 
general independent of the magnetic field. Field-dependent and resonant behavior occurs in general only 
in the next order in ( c5eff/r). Here 6eff is the effective skin depth and r the orbital radius of an elec
tron in the magnetic field. It is important to calculate the magnitude of resonant effects in an inclined 
magnetic field and to see whether such effects might be observed experimentally. 

It is also interesting to see how the law of reflection of electrons from the metal surface influences the 
high-frequency surface impedance. If the surface were strictly regular the reflection of electrons should 
be specular. But even a single crystal always has surface irregularities of sizes comparable with inter
atomic spacings, though they may be small compared with the effective skin depth. The reflection of elec
trons from the surface will therefore be diffuse or almost diffuse. This means that the distribution func
tion of the electrons reflected from the surface is uncorrelated with that of the incident electrons. 

The present paper discusses cyclotron resonance in an inclined magnetic field, and investigates in the 
case of a parallel field the influence of the reflection coefficient of electrons at the metal surface on the 
impedance. 

2. CYCLOTRON RESONANCE IN AN INCLINED MAGNETIC FIELD 

The calculation of the complete surface impedance tensor 

Zp.v- Rp.v + iXp.v = 8Ep. (0) I a/ v = ( 47t"w I ic2 ) aEp. (0) I aE: (0) (fL, v =X, y) 

reduces to a simultaneous solution of Maxwell's equations 

cur 1 E = - iw H I c; div H =divE =0; curl H = 47tj I c; 
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(2.1) 

( 2.2) 
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and of the kinetic equation for the departure f1 from an equilibrium Fermi distribution function f0 ( € ) 

iwf + v ~b_ + Q ~'l!.. + _b_ = eEv iJfo • 
1 z i)z ,1)-r to iJe (2.3) 

Here R,.&v and '4tv are the resistive and reactive parts of the impedance tensor, EJ.t (z) is the tangen
tial component of electric field, lv is a component of the total current, w is the applied frequency, Q 

= eH/mc is the "cyclotron"' frequency, m = (1/21T)8S (€, PH)/8€, S (€, PJI) is the area cut out from 
the surface € (p) = € by the plane PH= const, T is the dimensionless time of revolution of an electron in 
its orbit, t0 (p) is the relaxation time, the z-axis i.s the inward normal to the metal surface, and the 
x-axis is the projection of the constant magnetic field H onto the surface. The boundary coniditon for the 
kinetic equation (2.3) is in the case of diffuse scattering 

{ 1 =0 for z=O, vz>O. (2.4) 

We have found2•3 that the surface impedance tensor ZJLV is conveniently deduced from Eq. ( 2.2) and 
(2.3) by taking Fourier transforms with respect to z. After calculations precisely analogous to those 
made earlier2•3, we obtain the following equations fo:r the Fourier transforms. 

- k2£ fl.(k)- 2£~ (0) = ( 4TtiW I c2 ) jfl. (k); jfl. (k) = ~ {Kfl.v (k) cBv (k) - ~ Qfl.V (k;_ k') cBv (k') dk'} ; 
v 0 

(2.5) 

co co 

pfl. (k) = 2 ~£fl. (z) coskzdz; jfl. (k) = 2~jfl. (z) coskz dz, 
0 0 

1 = iw In + I I Qto. (2.6) 

Here cp ( T ) denotes the root immediately preceding T of the equation 

If there is no such root, then cp ( T) = - oo. The quantity (kv /Q), which appears in the argument of the co
sines in Eq. (2.6), is of order (r/l5eff) » 1. Therefore the integrals (2.6) can be evaluated by the method 
of steepest descent. Elementary but very lengthy calculation then leads to the following results. 

To the lowest order in ( Q/kv) 112 ,.., ( l5eff/r) t72 « 1, the surface impedance is independent of magnetic 
field and is equal to its value for H = 0. In the first and second higher orders, the dependence on H does 
not have a resonant behavior. A weakly-resonant dependence appears only in still higher terms in the ex
pansion of the impedance in powers of ( 6eff/r) 112• Also only the Zyy component of the surface imped
ance tensor shows a resonance. Thus resonant absorption of power can occur only for electromagnetic 
waves incident on the metal with a definite polarization. The electric vector of the incident wave must be 
parallel to the y-axis ( perpendicular both to H and to the normal to the surface) • 

The relative magnitude of the resonant contribution is 

l!.Zres (8eff')'l• [ 1 ] -·-~A- In , z (0) r 1- exp (- 211:iw 1 0 0 - 2m0 I 0 0) 
( 2.7) 

At resonance (when w II:$ qS'20 with q an integer) this contribution has only a logarithmic singularity for 
(vo/w) « 1. Here S'20, r, and v0 = (1/t0 ) are the Larmor frequency, the orbit radius, and the average 
along the orbit of the collision rate, for an electron with vH = 0. A is a complex coefficient independent 
of H, 
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Oeff• = I c2Z (0) I 4rcw/ ~ (o2l)''·; a = (mc2 I 2rcne2 )'1·' 

and I. is the mean free path. The resonant effect is small because it is produced only by the small mi
nority of electrons which return many times into the skin depth. Since the resonant contribution is so 
small we do not exhibit the exact formulae for it. 

The results are correct so long as the angle <P between the magnetic field and the metal surface is 
not close to zero or to !1r, i.e., so long as sin 2<P » <'>err/r. 

The case of a perpendicular magnetic field (cos <P « <'>err/r) is special, because in this case the elec
trons which give the main contribution to the current density have orbits lying entirely within the skin 
depth. We have then not cyclotron resonance ( w = qQ) but diamagnetic resonance ( w = n) similar to 
the diamagnetic resonance in semiconductors. Azbel' and Kaganov5 showed that, to the lowest order in 
( <'>eff/1.) [in a perpendicular field the expansion parameter is (<'>err/!) instead of ( <'>err/r) ], the effective 
mean free path 1.* = 1./( 1 + i ( w - n )to] in general disappears from the formula for the surface imped
ance. The impedance is in this approximation independent of H. A resonance (i.e., an extremum with 
respect to H) appears only in a second-order term proportional to (<'>err/£* )2 ln (l*/<'>eff). 

3. CYCLOTRON RESONANCE IN A PARALLEL MAGNETIC FIELD 
WITH ARmTRARY REFLECTION LAW OF ELECTRONS AT THE METAL SURFACE 

To study the dependence of the surface impedance on the reflection coefficient of electrons at the metal 
surface, we have to change the boundary condition ( 2.4). We suppose that a fraction p of the electrons 
is reflected specularly (i.e., without any change in their distribution function), while the rest are distrib
uted after reflection in the equilibrium distribution f0 (E). This gives the condition 

f (0; Vx, Vy, Vz) = pf (0; Vx, Vy, - Vz) + (1- p) f 0 (e) fqr Vz > 0 

For the departure from equilibrium f1 = f - f0 (E), the condition becomes 

f 1 (0; Vx, Vy, Vz) = pf 1 (0; Vx, Vy, - Vz), Vz > 0. (3.1) 

We showed earlier2 that the Fourier transform of the current density can be determined if we know the 
relation between 81/J_ (0; v)/8z and 1/J- ('0; v), where 1/J± (z; v) = f1 (z; v) ± f1 (z; -v). Equation (2.3) 
implies 

acjl_ (z; v)laz =- {iw + 1 I t 0 (p) + na I a't} cJI+(z; v) lvz 

using also the fact that E (p) is an even function. We need therefore only find the relation between 
1/J+(O; v) and 1/J_(O; v). The boundary condition (3.1) gives 

(3.2) 

(3.3) 

where w is the two-dimensional vector with components (vx, vy ), and sgn x denotes the sign of x. 
Changing Vz into -vz in Eq. (3.3) and eliminating 1/J+ (0; w, -Vz ), we find 

sgn v 
ljl+ (0; Vx, Vy, Vz) = -- j _ p: {( 1 + p2) cjl_ (0; Vx, Vy, Vz)- 2pcjl_ (0; Vx~ Vy, - Vz)}. 

When p - 0 we obtain the boundary condition used in Ref. 2. When p - 1 we find 

cjl_ (0; w; Vz)-+ cjl_ (0; w; - Vz). 

( 3.4) 

The Fourier transform of the current density can be found from Eq. ( 3.4). For simplicity we write 
down the formula for j (k) only for the case of an isotropic quadratic dispersion law E (p) = p2 /2m, 
where m is the effective mass, assuming a relaxation time t 0 independent of p (the resistance being 
in the residual range), and taking the radio-frequency and constant magnetic fields perpendicular to each 
other. Under these conditions we have 

~ ~~ 00 ~ 

j~'- (k) = K (k) £~'- (k)- ~ Q (k; k') £~'- (k') dk'; K(k) = 7 ~ cos2 .&sin .&d.&· ~e-Yxdx· ~cos [krsin.& (cos't- cos('t -x))] d't; 
0 0 0 0 
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>t/2 00 

Q (k; k') = ~r ~ cos2 & sin2 & d& ~ e-Yxdx· I(&; x); 
0 0 

" 
I(-&; x) = \' dA. sin ), c_o_s _,_[k_r '-sin_~'-('-'-co::..::.s_"A· __ -...::.co::..::.s...'.:("A.:....+~x~)):.!.)_-..!..pc:.::o::,;s !:.:[k.:....r :.::sl~n~:...!.(c:.::o.:..:s "A::_-_c:.::o~s(.:.:._"A-_x::!!_!)}) 

j eY"A_ pe y"A 
0 

~ ne2l 
X~cosh"['ij·COS(k'rsin&(cosi.-COST,))dr;; cr=f.~v; 

0 

mvc r=-· 
eH' 

l - vt0 • 

- 1 +iwt0 ' 

v=v(cos&, sin&cos't, sin&sin't); n=8rcp3 f3h3 • (3.5) 

When the skin effect is anomalous kr ,..., (r/6eff) » 1. The method of steepest descent then gives the 
asymptotic formula 

K (k) _ 3tta 1+ exp (-2tty) _..!__ 
- 41 1-· exp (-2tty) k ' 

3a exp (- 2tty) 1- p f 
Q (k; k') = ·41 1 _ exp (- 2tty) 1- p exp (- 2tty) V kk' 

[ _ ~ cosh2 tty J 3 (1 + p) a Jcoshtty·exp (-tty) + [ 1 _ + V2 y In (k I k') ]-l} In (k I k;) , 
X rei> (k k) + k + k' + 4ttl h- p exp (-2tty) (l reB (3/,, 3/2) V kr- Vk'r . k2 -k 2 

(3.6) 

where B (p, q) is the Eulerian integral of the second kind. Equation ( 3.6) may be regarded as an inter
polation formula, since it gives the correct result both for 

1 - (l ~ IT~ I and for 1 - (l ~ I T Y 8eff• I r j • 

Detailed calculation shows that, for all values of p f. 1 [more precisely, for 1 - p »I 'Y I< 6eff/r )112 ], 

the surface impedance near to resonance { w FtS qn) or in the strong field regime (I 'Y I « 1) is inde
pendent of the reflection coefficient p. The formulae for Z which we obtained earlier1- 3 remain valid. 

The case of specular reflection is special, because in this case the main eontribution to the current 
density comes from electrons which collide repeatedly with the surface. To the lowest order in ( 6eff/r) 1/ 2 

the impedance has a non-resonant dependence on magnetic field. Resonance appears only in a higher
order term of order ( 6efr/r). 

In strong fields ( I 'Y 1 « 1) the field-dependence of the impedance is quite different for p = 1 and for 
p f. 1. We find 

Z (H)~ Z (O)T'I• (8 I l)'lu- H-'/, (p = 1); Z (H)~ Z (O)T'I. ~ H-~ (1 - (l ~ /'r I (8e££ I r)'l•). ( 3. 7) 

The exact formulae for the impedance with p = 1 will not be reproduced here, since this case is of purely 
theoretical interest. 

In conclusion I take the opportunity to thank I. M. Lifshitz and M. Ia. Azbel' for looking over the results 
of this work. 
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