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The Poynting vector associated with the Cerenkov radiation also 
changes but only at the individual points w == w'. 

(30) 

We may note that here, just as in the preceding case, there is are
------f=~..---- x, gion in which transition-radiation wave field is formed. 

In conclusion the author wishes to express his gratitude to I. I. 
Gol' dman for a number of interesting discussions. 
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A formula for the dependence of the cross-section of a nuclear reaction involving the emis
sion of several particles on the energy of incident nuclei has been obtained using the statis
tical theory of the nucleus and Bohr's concept of nuclear reactions. The formula has been 
used to compute the cross-sections for nuclear reactions involving the emission of 1, 2, 3, 
or 4 neutrons from Bi~g9 and 1~ 7 when bombarded with protons, deuterons, or a particles. 
The dependence of the entropy of a nucleus on the excitation energy and mass number has 
been determined using the gas model of the nucleus. The results of the calculations agree 
satisfactorily with the experimental data. 

IT is known that an excited nucleus emits particles (n, p, a, y, etc.) in transition to the ground state, the 
energy distribution of the particles being approximately Maxwellian (as follows, for example, from the 
evaporation model of the decay1 ). Accordingly, the m~~ energy carried away by an emitted particle is 
much smaller than the excitation energy of the nucleus~ If the excitation energy is sufficiencly large the 
nucleus cannot, therefore, return to the ground state emitting a single particle. 

Both theory1 !:!-nd experiment3•4 show that the probability of emission of a single particle decreases with 
increasing excitation energy of the nucleus. Consequently, in transition to the ground state such a nucleus 
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will emit several particles, the number of which depends on the initial excitation energy and on the bind
ing energy of the particles in corresponding nuclei. 

In the present note we calculate approximately, as a function of the excitation energy, the probability 
that a certain residual nucleus will be formed after consecutive emission of several (k) particles by the 
excited nucleus. Since excited nuclei are obtained by bombarding the target nucleus A with another nu
cleus a, it is easy to find the dependence of the investigated probability on the energies of the incident 
nuclei. 

Consider the following reaction: 
k k 

(A+ a)--+ (A+ a)"~( A+ a-~ b1) + ~ (b1). 
l=l l=l 

(1) 

where (X) denotes a nucleus with mass number X. Since, according to Bohr, reaction (1) consists of 
two independent processes (formation of the compound nucleus (A+ a)*, and its decay), the cross-section 
for such a reaction can be written as1 

(2) 

where u c ( a) is the cross-section for the formation of a compound nucleus by the nuclei A and a, and 
7ik is the probability of the decay of the compound nucleus into final products. 

The cross-section for the formation of the compound nucleus can be determined by means of the clas
sical formula · 

( ) R2 { 0 , Ea < Ba; 
r1c a ='It a 

1 - Ba/Ea, Ea :> Ba, 

where Ra = r 0A t/3 + Pa• Ea is the energy of the incident particle in the center-of-mass system of A and 
a, and Ba is the Coulomb barrier, given by the formula 

(3) 

Quantum-mechanical calculations show, however, that uc (a) is different from zero even for Ea = Ba, 
when it equals5 

(4) 

It is therefore possible to determine the cross-section for the formation of a compound nucleus by charged 
particles, with sufficient accuracy, in the following way (Bn = 0 for neutrons): 

ac (a)~ 'ltR~ (1 - ( 1- rx.a) Ba/Ea), Ea ?:;- Ba; (5) 

Oc (a)~ 'ltR~rx.a exp { -2g f (Ea/Ba)}. Ea < Ba. (6) 

where 

f (x) = x-'1• arc cos x'J.- ( 1-x)'!.; Dl:a = 0,81g-'i•; g = (2MaZaZAe2Ra)''•fh. 

The cross-sections for reverse reactions, necessary for finding '11k• will be computed using formula 
(5) only, which considerably simplifies the calculation. 

Formulae for the probability '11k of decay of the compound nucleus with emission of 1, 2, 3, etc. par
ticles are given by various authors. 1•6- 9 The formulae, however, have been calculated for the case when 
the compound nucleus, after emitting kk particles, may be found in any state compatible with the law of 
the conservation of energy. As a rule, the values of 'Tlk• calculated according to those expressions, either 
increase or decrease very slowly with the excitation energy, leading to a large discrepancy between the 
theoretical and experimental cross-sections. 9 This is connected with the fact that after emitting k par
ticles, the residual nucleus can emit the next (k + 1)-th particle if the excitation energy is larger than 
the binding energy of any particle in the same nucleus. (Here, as in the following, we neglect the proba
bility of 'Y emission since this process, on one hattl, does not change the residual nucleus and, on the 
other, is very small compared with the probability of particle emission, when the excitation energy is 
larger than .the binding energy.) In the following, therefore, we shall consider only the case when the nu
cleus, after emitting k particles, is in a state with excitation energy smaller than the binding energy of 
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any particle in it. The probability of such a process is equal to the difference of the total emission prob
abilities of the k-th and the (k + 1)-th particle, i.e., 

" k 

"1/k = fn ( U a + ~ Eb1) - ~ fn+l ( V a + ~ sb1 + Ebl<+l,v) , 
•-1 v 1-1 

(7) 

where €bi are the binding energies of particles bi in the corresponding nuclei A+ a - b1 - ••• - bi-t• 
and Ua = Ea- €a is the excitation energy of the nucleus (A +a). Summation over v in the second term 
corresponds to the fact that the ( k + 1 )-th particle may be a neutron, a proton, etc. ( ~+t v = n; p ••• ). 

If • 

" 
U a<-~ zb1- Eb11+1• v (/n+1 = 0), 

i=l 

then Eq. (7) coincides with the expressions given in Refs. 1, 6- 9. 
Equation (7) determines the probability of formation of the residual nucleus (A +a- b1 - •.• - ~) 

as the result of consecutive emission of the particles b1, ba· ••• , ~ from the nucleus (A +a) in a given 
order. The same residual nucleus can be formed by emission of the same k particles in a different order 
or by emission of entire complexes of nuclei. For the description of a nuclear reaction it is therefore 
necessary to average Eq. (7) over all permutations of the k particles and then to carry out summation 
over all possible groupings of the emitted elementary particles, i.e., 

(8) 

where (k) denotes permutation; 2: (k) = k! 

The cross-sections calculated by means of formulae (5), (6), and (8) can be compared with experimen
tal data and used to compute the yield of various isotopes. 

As an example, let us consider the follQwing reaction: 

ln1+ P2 
cu:: + p---+- (Zn~) * ---+- cu:: + P1 + n2 . 

d1 

Accordingly, the formation probability of the nucleus Culi will be 

7i = ['12 (n1; P2) + '12 (pl; n2))/2! + 11dd1) I I! 

In order to calculate Ik(X) we make use of the following equation: 11 

X x-Eb, 

In (x) = vdEb,) dEb,. ~ fdEb,) dEb, ... dEb,. 
0 0 

(9) 

where fi ( Ebi) dEbi is the relative differential probability of the i-th emission process, as given by the 
formula1 

Evmax 

fi (Ebi) dEbi = bi''(biac (bi) Eb/ui dEbJ ~ ~ fi (Ebi.) dEbiv' (10) 

where bi, 'Ybi• and Ebi are, respectively, the mass number, statistical weight, and kinetic energy of the 
emitted particle; O'c(bi) is the production cross-section for the formation of a compound nucleus from 
the nuclei (A +a- b1 - ••• - bi) and (hi)· We shall use the following approximate expression for 
uc(bi) [cf. Eq. (5)]: 

wi is the level density in the nucleus (A + a - b1 - ••• - bi), given by the following formula: 

.w1~(2J1.+ l)e81 , 

(11) 

(12) . 
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where Ji is the spin of the stable or metastable state of the nucleus (A +a- b1 - ••• - bi), and Si is 
its entropy: 

i i 

S~=s(ua+~(Ebp-Ebp); A+a-~ bp)· 
P~1 P-1 

(13) 

Taking Eqs. (11) and (12) into account and introdueing the notation 

(14) 

we obtain 

Yvmax 

f1 (Yi) dyi = g"1Y1 exp {S;} dy;j ~ ~ f1v (Yi) dy1, (15) 
0 

where 

S i = S ( U a - ± (W bp + yp); A + a - ± bp) ; 
1-1 

lmax = Ua- ~ (Wb + y,)- Wb . . p I,'J 
(16) 

P-1 P-1 P-1 

f:onsequently, the expression for 7Jk is 

(17) 

k 
where In ( x) is given by (9) and (15); the quantity Wk = L Wbi exceeds the threshold of emission of 

i=1 
k particles from the excited nucleus, since we are determining the cross-sections for the reverse reac
tions induced by the charged particles by Eq. (11). In the case of neutron emission, Wk is exactly equal 
to the threshold. If both charged particles and neutrons are emitted, Wk represents excitation energy 
for which the yield of a given reaction becomes significant. In that case, Wk will be called the effective 
threshold, equal to wk + wbk for any ( k + 1 )-th emission process. 

+1,V 
In order to obtain the dependence of 7Jk on Ua, a k-fold integration of Eq. (9) is necessary. It can be 

seen from Eqs. (9) and (15) that the inner integrals depend also on Ua, which makes the computation 
(numerical integration) difficult. In order to simplify the calculation, it is convenient to make first the 
following substitution: 

Ua-~ (Wbp+yp)=tl. (18) 
p-1 

The calculation of Ik ( x) presents no difficulties when the dependence of the entropy of the nucleus on 
the excitation energy and on the mass number is know:n. If the results are applied to the simplest nuclear 
reactions, where neutrons are emitted from heavy nuclei (A> 100), it is possible to make several ap
proximations. 

First, it is possible to neglect the emission of protons, a particles, etc. We have then, since the last 
inner integral in the expression for Ik ( x) equals unity, 

(19) 

where Wk and Wk+i are the thresholds of emission of the k-th and (k + 1)-th neutron from the excited 
nucleus. 

Taking it into account that 7Jk I- 0 only when Ua > Wk and that 

(20) 
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we obtain the following approximation for Si: 

(21) 

Substituting (21) into (15) and then into (9), and taking it into account that 
obtain, after a few transformations, 

( 8Sa/8U)Yv max » 1, we 

y 

n (as a ) p ( ) 1 \ t2k-! -t dt /, (x) = pk oU a X , k y = (2k_-1)! ) e . 
0 

(22) 

The functions Pk ( y) are tabulated 10 for various values of k and y. Graphs of the functions 
four values of k (indicated on the curves) and for 0:::; y:::; 15 are given in Fig. 1. 

~ (y) for 

The dependence of the entropy on the excitation energy and mass num
ber can be obtained by assuming a specific nuclear model. Using the re
sults of the gas model, we have6 

pk 
t.D,-r--,~~~~~~~ 

Sa= 'It V (A + a) U a/33, Ua = Ea-Sa• (23) 

The cross-section for the reaction (A+ a)-(A +a- kn) +k(n) is, 
therefore, 

(24) 

where 

8 10 12 14 !I 

FIG. 1. Graphs of the 
functions Pk ( y). 

Ea is the energy of the incident particle in the center-of-mass system, and €a is the binding energy of 
this particle in the nucleus ( A +a). 

The cross-sections for reactions accompanied by neutron emission have been calculated according to 
the formulae (24), (5), and (6), for incident protons, deuterons, and a particles. Certain thresholds Wk 
necessary for the calculation of theoretical curves have been determined by comparison with experimental 
cross-sections, mainly from their ratios, in order to exclude the cross-section for the compound nucleus 
formation. A direct determination of the thresholds from mass values is difficult, especially in the case 
of emission of two, three, etc. neutrons, since the masses of corresponding isotopes are known to an ac
curacy of 1-2 Mev. In addition, the following radii Ra have been assumed for the interactions between 
the incident particles and the nuclei: 1 

Rd = Rp = 1.5AV.. w-13 em; Ra = (l.5AV. + 1,2) .lQ-13 em. 

The interaction radii are rather arbitrary and, as a rule, yield an overvalued geometrical cross
section (by ,... 10%). However, since the production cross-section for a nucleus as calculated from Eqs. 
(5) and (6) is only approximate, it is not necessary to know Ra very accurately. Moreover, the depend
ence of the reaction cross-section on the energy of the incident particles will not change significantly 
since all cross-sections are calculated for Ea > 0.5 Ba, in which region the cross-section of compound 
nucleus formation depends relatively weakly on Ea and is not very sensitive to small variations in Ra. 

rn 
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Proton Energy, Mev The results of the calculations are shown in Figs. 2 and 3. It 
15 t9 ZJ 27 31 can be seen that the cross-sections obtained with Eq. (24) are in 

a -Particle Energy, Mev 

good agreement with the experimental data. The cross-section 
for the ( d, n) reaction has not been calculated, since this proc
ess is mainly due to deuteron stripping and to splitting of the 
latter in the Coulomb field of the nucleus. The cross-section for 
the (a, n) reaction is not shown, in view of its smallness. 

FIG. 2. Dependence of the Bi~~9 reaction cross-section on the 
energy of incident particles: 1- (p, n ); 2- (p, 2n ); 3- (p, 3n ); 
4- (p, 4n ); 5- (a, 2n ); 6- (a, 3n ). The solid curves are drawn 
according to Eq. (24); •- data of Ref. 4; 0- data of Ref. 3. 
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In conclusion, the author wishes to express his gratitude to M. M. Agrest for valuable advice and 
discussion. 
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FIG. 3. Dependence of the Bi~gs reaction cross-section on the deuteron 
energy: 1- ( d, 2n); 2- ( d, 3n); and of the I~F cross-section: 3- ( d, 
2n); 4-(d, 3n). Solid curves drawn according to Eq. (24); +, •-data of 
Ref. 11; 0-data of Ref. 3. 
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It is shown that if finite conductivity is taken into account, the equations of magnetogas
dynamics become parabolically degenerate. The set of equations is replaced by an approx
imate but completely hyperbolic set, for which the characteristics are found. It is shown 
that the equations of a stationary one-dimensional flow have a singularity where the flow 
velocity is equal to the local sound velocity. Conditions of the transition of the flow veloc
ity through this critical value under the action of a magnetic field have been studied. Small 
oscillations in a conducting medium, shock waves, and the structure of the shock are 
investigated. 

THE magnetogasdynamics of an ideally conducting medium have been sufficiently studied. Types of vi
bration,1•2 shock waves,3•4 and their structure5- 7 have been investigated; one-dimensional motions have 
been studied, 8 where the characteristics were found for a system of equations and the particular 
(Reinmann) solution was found for arbitrary is entropy. 

Taking the finite conductivity into account greatly complicates the equation by introducing new non
linearities, raising the order of the system, and changing its character. As will be shown below, the 




