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the molecular oscillator; an investigation of this kind, however, is beyond the scope of the present 
paper. 
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The transition radiation and the Cerenkov radiation which are produced when a charged 
particle moves successively through two media which differ in their dielectric and mag­
netic properties are considered. The cases in which the particle moves from vacuum 
into the medium and from the medium into vacuum are considered in detail. 

THE transition radiation which is produced when a particle moves from a medium characterized by a 
given dielectric constant into another whose dielectric constant differs from the first was first considered 
by Ginzburg and Frank1 (see also Refs. 2-4). In the present paper we consider the radiation fields which 
are produced in the general case for media which differ in both their dielectric and magnetic properties; 
certain particular cases are analyzed. 

1. GENERAL CASE 

We consider the field associated with a particle which has a velocity v and moves from one medium 
into another. The first medium will be characterized by the macroscopic constants E 1 and p. 1 (the di­
electric constant and magnetic permeability); the second medium is characterized by E 2 and p. 2• We shall 
assume that the energy lost by the particle per unit length of path is negligibly small compared with its 
kinetic energy. Under these conditions the field associated with the particle is given by Maxwell's 
equations 

1 ao 4rr , 1 as curlH = --+ --veo(r-vt) curlE = ---c at c • c at • 
divB = 0 div D = 4rre8 (r- vt). 

(1) 

It will be assumed that the particle moves along the z-axis from - oo to + oo and that the interface 
between the two media is the plane z = 0 through which the particle moves at t = 0. We resolve the field 
and currents in triple Fourier integrals: 5 
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E (r, t) =~ E (k) ei (kr-wt) dk etc., (2) 

where 

(here and in what follows, quantities which refer to both media will be denoted by the subscripts 1, 2). 
The Fourier compone~ts of the field ·have the following form: 6 

(3) 

where x1,2 = E 1, 2 J.L 1,2 • The fields in (2) with Fourier components (3) do not satisfy the continuity conditions 
on the tangential components of E and H and on the normal components of D and B at z = 0. To satisfy 
these requirements we must add to the solution of the inhomogeneous Maxwell equations given above the 
solutions of the homogeneous equations with arbitrary Fourier component, and then determine these from 
the continuity requirements on the fields at the interface between the two media. 

We use the symbois p and IC to denote the components of the vectors r and k which lie in the xy­
plane. The solutions of the homogeneous Maxwell equations are written in the form 

(4) 

and similarly for H; 2(r, t). In order for the expression given in (4) to be a solution of the homogeneous . 
Maxwell equations, we require that 

1'i,2 = (wf c)2 X1,2- " 2 • (5) 

We use the symbol A' to denote the real part of A and A" to denote the imaginary part of A. The first 
medium is located in the region z <0. Hence, to prevent the field given in (4) from diverging at z--oo, 
we require that A~' <0. It is also obvious that the radiation field in the first medium (4) can propagate 
only in the negative z-direction (reflected waves) whence it follows that A; <0. From similar considera­
tions we find that A-2 >0 and A.;' >0. The signs for A.'~ and A.; which have been indicated refer to positive 
w. For negative values of w these signs must be reversed. 

It also follows from the equations for the radiation fields that 

H~.2 (k) = (c / Wf-Ld[(x + nl,1,2l x£~,2 (k)],. (x + nl,d E~.2 (k) = 0 

(the unit vector n is taken in the direction of the pos:itive z-axis). The last condition can be written in 
another form, resolving E~ 2 (k) into tangential and normal components: 

' 
xE~,21 (k) + /,1,2: E~,2n (k) = 0. 

(6) 

(7) 

Equating the field components at z = 0, we obtain four conditions for determining the Fourier compo­
nents of the radiation field. It is easy to show from these conditions that the E;,2t (k) vectors are in the 
same direction as the vector "· Assuming this to be the case, it turns out that only two of the four condi­
tions are independent; we take the following two conditions: 

ei 1 x ' ei x ' 
- 2rt2 ~ k"- (w 1 c) 2 X1 +Ell (k) = - 27t2 k2 - (w 1 c)• z2 + E:at (k), 

ei ("'fc2)Xlv-kz ' ei (wfc")x2v-kz ' 
2rt• k'-(wfc)'Xl +s1E1n(k) =2rt•- k'-(wfc)'X• +s2E2n:(k). 

(8) 

From Eq. (8) we obtain the following expressions for the Fourier components of the radiation field: 

(9) 

The following notation has been introduced 

(10) 
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The radiation fields in the second medium can be obtained from Eqs. (9) and (10) if the subscripts 1 and 2 
are interchanged. If in Eq. (9) we take IJ. 1 = IJ. 2 and € 1 = € 2, all the Fourier components of the radiation 
field vanish, as is to be expected. 

2. VACUUM-TO-MEDIUM CASE 

We consider now a case which is of practical interest, i.e., the case in which the particle moves from 
vacuum into a medium; we set € 1 = IJ. 1 == 1, IJ. 2 == 1 and € 2 == € == / + € 11

• We shall be interested in the field 
which is produced in the vacuum, i.e., the radiation field E~ and H~. 

We shall not write expressions for all the vacuum fields, as these can be easily obtained from Eqs. (9) 
and (10); the expression for E~ is: 

(11) 

where 4> is the angle between K and p, while 

(12) 

The integration over 4> extends from 0 to 21r, that over K from 0 to oo, and that over w from - oo to 
+ oo. The integral over 4> is easily computed in terms of Bessel functions. 

We introduce R, the distance from the point at which the particle enters the medium to the field point 
being investigated, and the angle 9 defined by the expression p == R sin 9 and z == - R cos 9; it is as­
sumed that R is large. If very small values of 9 are not considered the asymptotic expressions for the 
Bessel functions 7 can be used: 

Jp (xR sin 6) = Vr 2 . cos (xR sin 6- E~-- ~). rr><R. Sln (J 2 4 
(13) 

Thus we have 

(14) 

f (><) = ix sin 6- i),l cos 6; 'f' (><) =- ix sin 6- i/,1 cos 6. (15) 

For very large values of R, an integral of this type is most conveniently computed by the method of 
steepest descent. In this case the integrand must be an analytic function of K. However, the presence 
of A 1 and A2 in the integrand mean that the integrand is double valued. Hence, before deforming the 
path of integration we must take cuts in the K-plane to make this function single valued.* 

Above we have imposed certain conditions on the signs of the real and imaginary parts A 1, 2 along the 
real K axis. We have taken K == K1 +iK2• We require that A~ <0 and A; >0 over the entire plane of the 

II 
complex variable K. It is easy to show that the sign of A2 must correspond to that shown in Fig. 1 so 
that A~' > 0 in the 1-st and 3-rd quadrants and A 1' < 0 in the 2-nd and 4-th quadrants. The cuts are taken 
as shown in Fig. 1 by the heavy lines. The integration over K from the point 2 to + oo is taken along the 
lower edge of the cut. 

We now turn to the integral in (14), proceeding with the integration of the first part 

co 

~ ><). -
e3rti/4 -_--1 -'tj1 ef<><lRVxdx. 

&At- A2 
0 

(16) 

It is easy to show that the saddle point is Ko = (w/c) sin 9. Two lines on which Re f(K) == 0 pass through 
this point. One of these lines is the Kcaxis while the other is the solid line shown in Fig. 2. In the cross­
hatched regions Re f ( K) > 0; in the non-cross-hatched regions Re f ( K) < 0. It can be shown that the line 
of shortest descent in the vicinity of the saddle point is at the angle cp == - 1r/4 with respect to the K 1 

axis, as shown by the dotted line in Fig. 2. We introduce a new variable b which is defined by the 

*The ambiguity due to the presence of ..fK in Eq. (16) is easily removed by taking the cut along the 
negative K-axis. 
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relation K - Ko = b exp iqJ. The integral in (16) alonl?; the line of shortest descent is easily computed if 
we carry out the integration over b from - oo to + oo, In this case, because of the sharp maximum in 
the exponential at the saddle point, the expression which stands before the exponential may be taken out­
side the integral sign since it varies only slightly in this region and we then perform the integration for 
the exponential function alone. 

It is still necessary to integrate the second term iln Eq. (14), in the exponential of which we have the 
function <P _( K}. In a completely analogous way it can :be shown that the saddle point is now K 0 = ( w I c) sin <P, 
while the dotted line in Fig. 3 is the line of shortest descent. It is easy to see, however, that in this case 
the deformed path of integration does not pass through the saddle point (Fig. 3), so that this integral 
vanishes in the approximation of large R. It is also easy to show that in this case the poles of the inte­
grand do not affect the calculations .. 

As a result we have 

where 

+oo 
, e!32 \ . . 

ElP = ""'~R ) sm 6 cos2 6~e<w[(Rfc)-tJ dw, 

~ = (e- ~ Ve- sin2 6) I (1 - p2 cos2 fJ) -1 I (1 + !3 Ye- sin26) . 
e cos e + 1( €- sin2 e 

Similar calculations lead to the following expression for the normal component of the radiation field: 

+oo 
E' - ~ \ sin2 6 c'OS 6~ei"' [(Rfc)-tJ dw 
In- 1rVR j - . . 

-oo 

(17) 

(18) 

(19) 

It is obvious from the formulas which have been obtained that the electric vector of the radiation field 
E~ lies in the plane which passes through the ray to the point of observation and the trajectory of the 
particle and is perpendicular to the observation ray, .i.e., the direction of R. We have 

+oo 

E~ = E~p cos 6 + E~n sin 6 = ~~~ ~ sin a cos fi~eiw [(Rfc)-IJ dw. (20) 
-00 

Finally, we can also obtain an expression for the magnetic field H~ which, as is to be expected, is the 
same as the expression for E;. Thus, at large distances, we have a spherically diverging wave with 
Poynting vector parallel to R. The Poynting vector fllux in the solid angle dQ = sin (} d(} d<fJ during the 
time of flight of the particle is 

d~rans. = _E._ R2 ~{ E' H' dt = ce2 sin2 (J cos2 (J ~· r I (e- 1) (1 - ~2 + fl v e- sin26) ·12 d 
dO. 4""' j 1 1"' 7r2V2 (1-~•cos"2fJ)2 j (ecosO+Ve-sin2fJ)(1 + ~Ve-sin2 6) w. (21) 

-ex> 6 
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The expression which has been obtained coincides with the corresponding formula in the paper by 
Ginzburg and Frank, 1 which was obtained in a more approximate manner.* 

In the extreme relativistic case the radiation has a sharp maximum in the direction 0 ,..., m/E. Thus, 
in integrating Eq. (21) over angle, it is convenient to remove all factors which have a weak angular de­
pendence from under the integral sign, substituting 0 ,..., 0 in these expressions. The result is 

<X>( - )2 _, e2 Ve(cu)-1 2 lTtrans.=-~ V (lnT[f-l)dw. 
1tC 0 e (cu) + 1 -

(22) 

In conclusion we may note that in integrating over K certain restrictions have been applied; there­
sults must therefore be qualified. In particular, we have taken the asymtotic expansions in place of 
the Bessel function and have used method of steepest descent in the integration. It is obvious that this 
procedure is valid when ( w/ c) R sin2 0 » 1. Thus, in the spatial region close to the trajectory of the par­
ticle, bounded by the surface R,..., ~/sin2 0, the Poynting vector associated with the transition radiation 
is not given by Eq. (21). In this region there occurs the "formation" of the transition-radiation wave field 
which then, at distances R »~/sin2 0, is given by Eq. (21). The existence of this region is unimportant 
for that part of the transition radiation which is not emitted at small angles. However, in the extreme 
relativistic case, in which the radiation has a sharp maximum in the direction 0 ,...,m/E, this "formation" 
region is extremely important and is defined by R,..., ~E2/m2 • 

3. MEDIUM-TO-VACUUM CASE 

We now consider the case in which the particle moves from medium into vacuum, i.e., E2 = /J. 2 = 1, 
/J. 1 = 1 and E 1 = E = E' + iE ". It is obvious that in this case the radiation field in the vacuum will consist 
of both the field due to transition radiation as well as that due to the Cerenkov radiation which is gener­
ated in the medium and then propagates into the vacuum. t 

Thus, just as in the preceding section we write an expression for E;p , integrate over angle <I> and 
take the values at large distances R (p = R sin 0, z = R cos 0): 

where 

f 1 (x) = ix sin 8 + i"A2 cos 8, 'f'1 (x) = - ix sin B + i),2 cos 6. 

(23) 

(24) 

We set A.{ < 0 and ;>..; > 0 over the entire plane of the complex variable K. Then the signs of ;>..'; and ;>..'; 
are the opposite of ;>..'; and ;>..'; respectively, as given in the preceding section. 

It is easy to show that the saddle points and lines of steepest descent of the functions f1 ( K) and cp 1 ( K) 

coincide with the saddle points and lines of steepest descent for the functions f ( K) and cp ( K). However, 
in contrast to the preceding case, the following two factors must be kept in mind in the integration over K. 

First, in deforming the line 0- oo in the line of steepest descent, account must be taken in certain 
cases of the pole of the function 712, which adds the residue at this pole to the integral along the saddle­
point line. Such a pole of a function 712 is K1 = ( w/v) .J {3 2 E ( w) - 1. Since € 11 ~ 0, the pole contributes to 
the integral in this case if it is located in the K plane in the region which is cross-hatched in Fig. 4. It 
will be shown in the following that this term yields the Cerenkov radiation which is generated in the me­
dium and then passes into the vacuum. For small values of /' 

x'=: [V~2 s'-I+i~2 s"/V~2 s'-IJ. (25) 

*The above-mentioned formula [(32) of Ref. 1] contains an error: the denominator of the first term in 

circular brackets should read w /v + .J k~ - k~ sin2 0 and not w /v - .. /k~ - k~ sin2 0 • This error arises as 
a result of the wrong sign in the expression for the retarded phase of the refracted wave. The author is 
indebted to V. L. Ginzburg for this information. 

tin this case the expression for the transition radiation cannot be obtained for all media from Eq. (21) 
by simply reversing the particle velocity. This is immediately obvious from the fact that in the denomi­
nator we have the term 1 - {3 .j E - sin2 0, which vanishes at certain frequencies for transparent media. 
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Secondly, it can be shown in our case that for certain media and frequencies the above-mentioned pole 
is close to the saddle point or coincides with it. Then the part of the integrand in front of the exponential 
is not a slowly-varying function in the region of the saddle point and cannot be taken out from under the 
integral sign as in the preceding section. It can be shown that such a situation occurs if /' ( w') < J c/ w'R 
for the frequency ranges w' ± t::.w' where w' and t::.r./ are defined by the relations 

~2 s' (w')- I = ~2 sin2 Band ~.w' ~ V c I w' R (ds I dw'fl. 

Since the increment t::.w' is small compared with w', for the latter case we obtain a formula which re­
' fers only to the frequency w • 

II 
For simplicity let us assume that E = 0. Then, from (25) it is obvious that the pole adds to the inte-

gral if 

(26) 

Then we have 

(27) 
-00 

sin 0 COS 0 { E + ~ V E- Sin2 () _ _ 1 } eiw (R/c-1) dw + 2e 

ocos0+Ve:-sin2 0 1~~2 C0S 2 0 1-~Ve-sin2 0 vVL.r.RsinO·v 

+oo 

x I V 1 + ~ 2 
(1 - e:') (~2 s' - I) '1• V- iw exp {i (- wt + ~ V ~2s' - I R sin 6 + ~ VI + ~2 (I - s') R cos 6)} dw. J,, 1 + E V 1 + ~2 (1 - e:') V V 

The first term in this expression is to be associated with the transition radiation since the second term 
appears only if the condition in (26) is satisfied, yielding the Cerenkov radiation. The exponential term in 
the integrand of this term shows that the Cerenkov field of frequency w is propagated at an angle {} ( w) to 
the direction of motion where it ( w) is defined by 

sin-& (w) = 'V~I2s' (w)- 1 I~· 

This result can be understood on the basis of the folloJwing s~mple observations. Cerenkov radiation of 
frequency w moves at an angle given by cos o' = 1/ {3 E' ( w) in the first medium. If now we apply the 
law of refraction, the angle {} ( w) is given by the above expression. The left-hand part of the double in­
equality in (26) is the condition for the production of Cerenkov radiation in the first medium. The right­
hand part, however, which now can be written in the form {} ( w) ::; (), indicates that the field at frequency 
w moving at an angle {} ( w) can be seen at angles lar1~er than or equal to {} ( w). 

Using similar arguments, we can obtain expressions for E~ and H;cp. From Eq. (27) it is obvious 
that the transition radiation and the Cerenkov radiation do not interfere. The total amount of transition 
radiation emitted during the time of flight of the particle, in the solid angle dO = sin () d() dcp, is 

dWtrans. ce2 sin 2 e cos2 e ~ f I (e: -1) (1- ~ 2 - !3 Ve~) 12 

~ = "2v2 (1- ~ 2 cos' 6)1 ~ (e: cos 6 + V e:- sin2 e) (1 -ll Ve:- sin2 e) dw. 
(28) 

In the case of transparent media, the integration in the last formula does not extend over frequencies 
which lie in the region w' ± t::.w'. 

For the Cerenkov radiation, we compute the Poynting vector flux through the annular area p, p + dp 
during the time of flight of the particle: 

+oo "' 
dWtrans.= _!_ \ dtE' H' cos-&(w) ~!•m = _4e2f Yc~'e:' -1)(1 + ~2 (1-e:')) wdw. 

tip 4r. ) 2 2"' ' V2 ) (1 + E v 1 + ~ 2 (1- e:')) 2 
-oo 0 

(29) 

The integration in the last integral is performed only over those frequencies for which the condition in 
(26) is satisfied. 

When w = w' and /' = 0, the saddle point is simultaneously a pole of the integrand, which is trav­
ersed from below. The integral along the line of descent is divided into the integral (in the t;;ense of the 
principle value) and the half the residue at the pole. As a result, for frequencies close- to-w' the follow­
ing formula applies: 
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The Poynting vector associated with the Cerenkov radiation also 
changes but only at the individual points w == w'. 

(30) 

We may note that here, just as in the preceding case, there is are­
------f=~..---- x, gion in which transition-radiation wave field is formed. 

In conclusion the author wishes to express his gratitude to I. I. 
Gol' dman for a number of interesting discussions. 
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A formula for the dependence of the cross-section of a nuclear reaction involving the emis­
sion of several particles on the energy of incident nuclei has been obtained using the statis­
tical theory of the nucleus and Bohr's concept of nuclear reactions. The formula has been 
used to compute the cross-sections for nuclear reactions involving the emission of 1, 2, 3, 
or 4 neutrons from Bi~g9 and 1~ 7 when bombarded with protons, deuterons, or a particles. 
The dependence of the entropy of a nucleus on the excitation energy and mass number has 
been determined using the gas model of the nucleus. The results of the calculations agree 
satisfactorily with the experimental data. 

IT is known that an excited nucleus emits particles (n, p, a, y, etc.) in transition to the ground state, the 
energy distribution of the particles being approximately Maxwellian (as follows, for example, from the 
evaporation model of the decay1 ). Accordingly, the m~~ energy carried away by an emitted particle is 
much smaller than the excitation energy of the nucleus~ If the excitation energy is sufficiencly large the 
nucleus cannot, therefore, return to the ground state emitting a single particle. 

Both theory1 !:!-nd experiment3•4 show that the probability of emission of a single particle decreases with 
increasing excitation energy of the nucleus. Consequently, in transition to the ground state such a nucleus 




