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The systems to be considered consist of n spherically symmetrical objects of infinitesimal 
size, which possess angular momentum and which interact only through gravitational forces. 
For such systems, it is relatively simple to derive the relativistic equations of translation 
and rotation from the Einstein gravitational equations. This derivation uses L. Infeld's idea 
of introducing Dirac delta-functions into the energy-momentum tensor. 

THE motions of masses in their own gravitational fields is a well-known and important problem. In par­
ticular, the important question: "Are the equations of motion for the masses contained in the equations for 
their gravitational field?" was answered affirmatively by Einstein. 1•2 Methods for deriving detailed equa­
tions of motion from the field equations of general relativity theory have recently been developed along 
two lines, represented on the one hand by the fundamental work of Einstein, Infeld, and their co-workers3- 5 

and on the other by Fock and his co-workers6• T and Papapetrou.8 Fock9 uses his approximational method to 
derive non-Newtonian equations and their integrals for the translation of finite rotating masses. 

The aim of the present paper is to derive non-Newtonian equations for the translation and rotation of 
infinitesimally small rotating, spherically symmetrical objects, on the basis of the approximate method 
developed by Einstein's school. The starting point is a paper by Infeld, 10 who gives a relatively simple de­
rivation of the non-Newtonian equations of translational motion for a non-rotating object represented by a 
singularity in the gravitational field. This derivation is so simple that Infeld, abandoning the tradition of 
the Einstein school of deriving the equations of motion from the free-space field equations, makes use, like 
Papapetrou, 8 of the vanishing of the divergence of the energy-momentum tensor, a result of Einstein's grav­
itational equations. At the same time he introduces a novelty in the form of Dirac delta-functions, corre­
sponding to the infinitesimal spherically-symmetrical particles mentioned above, as part of the energy­
momentum tensor. By "smearing out" the delta-functions he arrives at a continuous distribution of mat­
ter, e.g. at the spheric ally symmmetrical object of finite dimensions which is used repeatedly in his paper. 
Thus, this paper by Infeld, 10 serves in many ways as a link between the methods of Einstein and Fock. 

1. As already mentioned, the present paper will make use of Infeld's method10 for deriving the equa­
tions of motion. In this method we start essentially from the known equations for the graviational field 

( 1.1) 

where Newton's constant 'Y and the speed of light c have been set equal to unity, and the other quantities 
have their usual meaning.* Let us consider the motion of a system of n gravitating point particles. We 
assume here that the world lines of the particles do not intersect. Then Infeld takes as Taf3, for a sys­
tem of n particles without angular momentum, the expression 

ya~=v=gr~ = ~T~~. 
a 

-;k da1 da" 
Ta =ma-0 - 0 Oa• 

dx dx 
( 1.2) 

Here the sum is to be taken over all the n particles of the system, which are distinguished by the small 
letters a, b, ... ; there is no summation over repeated subscripts a, b, ... ; rna is a function only of 
the time, x0; ai are the coordinates of the a-th particle; 15a = 15 (xi- ai) is the usual three-dimen-

*Greek indices a, {3, ••• take the values 0, 1, 2, and 3, referring to both space and time coordinates. 
Latin indices i, k, 1., take the values 1, 2, and 3, referring only to the spatial coordinates. 
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sional delta-function, referring to particle a. Expression ( 1.2) for raf3 is derived from the energy­
momentum tensor density for a dust cloud 

T""~ = V- g pU"U~. U" = dx"fds, ( 1.3) 

by substituting p = [ Pa = [ m~lia (i.e., each spherically symmetrical cloud of material, described by 

a function Pa• is replaced by a material point having the same mass and located at its center of gravity). 
Therefore, rna=../- g(dx0/ds )2 m~. Integrating the relation 

( 1.4) 

which comes from ( 1.1 ), over a three-dimensional volume which contains the a-th particle but no others, 
we obtain the 4n equations 

~ r~&d'V = o. ( 1.5) 
Va 

from which the equations of translational motion can 1be derived.* 
Note that although the equations in ( 1.5) are not covariant in the usual sense (this is not a four-vector) 

they are still "covariant" in the sense that they preserve their form and symmetry in any system of co­
ordinates which permits an expansion in powers of A . t This is a reasonable conclusion, in view of the 
presence of delta-functions in Taf3. For, suppose the covariant expression 

r~gdD=T~3dVdx0 = 0 

is integrated over an extended four-volume Ua containing the corresponding a-th particle at the world 
point x~. T~n it is well known that upon going to the limit Ua-- 0 we again obtain a covariant expres­
sion. Since Taf3 contains delta-functions, we can make use of a three-dimensional volume Va with ex­
tended boundaries. The theorem of the mean can be applied to the integral over dx0• All this leads to 

~ T~~dQ = ~ dx0 \ T~~dV = t.x0 [ ~ T~~dV + 0 (t.x0)] = 0, 
~ 4~ ~ ~ 

where 0 (~x0 ) -- 0 as ~x0 -- 0. Upon dividing the last equation by ~x0 and then going to the limit as 
~x0 -- 0 (that is to say, in the limit as Ua-- 0) we obtain Eqs. (1.5).t 

2. The equations of translational motion can be derived from ( 1.5) with the aid of an approximate method. 
The particular method which is to be used will depend fundamentally on the choice of an expansion param­
eter A, chosen in the following way. Let cp ( xa) be any of the functions occurring in ( 1.1). Assume that, 
in the system of units where the speed of light c is unity, 8cp/8x0 « 8cp/8xi, i.e., (,0 varies rapidly with 
position in spa.ce, but changes slowly in time. (This assumption implies that the speed of the moving ob­
jects which create the gravitational field is small compared with the speed of light.) Hence we may say 
that 8cp/8x0 is an order of magnitude smaller than 8<p/8xi. In order to express this analytically, let us 
introduce the auxiliary time variable 

( 2.1) 

where the parameter A is chosen so that c,o, i = 8cp/8xi and c,o, 0 = 8cp/8T are of the same order of small­
ness. We now expand all the functions occurring in ( 1.1) in powers of A in the following way. From 

*Repeated indices are to be summed, as usual. Semicolons represent covariant differentiation, and 
commas represent the usual partial differentiation. g: is the determinant consisting of the components of 
the covariant metric tensor ga{3· 

t Such coordinate systems are essentially restricted to those in which a unique solution of the equations 
of motion exists. (They are Galilean in the zeroth approximation and harmonic in the first.) The coord­
inate conditions which arise in this problem have been discussed many times in the literature,5•9 - 14 and 
since they have no direct bearing here and require a special treatment, they will not be considered now. 

t Another argument for the "covariance" of ( 1.5 ) is the fact that the equations of motion derived from 
them by Infeld, 10 for non-rotating particles, agree exaetly with the equations derived earlier. 3•5• 7•8 
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Newton's law of universal gravitation we deduce that the expansion of rna must begin with the second de­
gree, since the acceleration d2ai/dx02 = ll.2d2ai/dT2 "" ll.2ai is of the second degree. Therefore, according 
to Infeld, 10 we assume the expansion of rna to be of the form 

rna= /.. 2ma + f..4ma + o o o, ( 2.2) 
2 4 

which determines the expansions of all the other functions through the use of ( 1.1 ). For example, 

T00 = /..2T00 + /..4T00 + 0 0 0, 
2 4 

fOi = A3fOi + A5fOi + o o 0 , ( 2.3) 
3 5 

fih = t..4fih + t..6fik + 0 0 0; 
4 6 

goo= 1 + f..2hoo + f..4hoo +0 0 0, 
2 4 

goi = "A 3hoi + 0 o o, ( 2.4) 
3 

gik =- ou, + "A 2hilt +0 ° 0 0 
2 

The expansion of gaf3 is found from the conditions ga{3gf3CT = 6g; as shown by Infeld, 15 successive terms 
in these series differ by two orders. 

3. We now have to choose Taf3 for the case of rotating particles. For this purpose, consider anum­
ber of objects a of finite size, whose centers of gravity move in a Euclidean space with velocities va (T) 
while at the same time they rotate rigidly around their centers of gravity with angular velocities Wa ( T). 
Then the velocity of any point in an object is given by the sum v~ = va +Wax ra, where ra"" r - a is 
the radius vector from the object's center of gravity to the point in question. The following two questions 
now arise: ( 1) To what does the additional term Wax ra reduce when the object shrinks to a point at 
its center of gravity; and ( 2) in what way is this to be included in Taf3? 

Using an analogy from the hydrodynamics of vortical motion and from the determination of the vector 
field in classical field theory16 (particles with spin correspond to our rotating, infinitesimal, spherically 
symmetrical objects) we assume that Wax ra can be replaced by 

1ldaaxV'~a], (3.1) 

where CTa = ,J"a (T) is a pseudovector function of T, and \/"" ei 8/8xi operates on 6a· 
To find Taf3 we shall again start from ( 1.3 ), but this time the four-velocity ua must include the ad­

ditional effect of rotation, ( 3.1 ). To see how this additional effect can be introduced into ua, consider 
an arbitrary object a of finite dimensions, the position of whose center of gravity is described by a point 
Ma (xff) in a Riemann space-time with a metric determined by the system of n particles which we are 
considering. If a point ~ (xct) is infinitely close to the point Ma, i.e., xct = x~ + ~xa, then its four­
velocity is (noting that x~ = al, and separating the space and time components) 

U = { dxi 0 dx• } = { dx" dx~ ( dai + dl:J.xi ) ; dx"} 
ds ' ds ds dx0 dx~ dx~ ds ' 

( 3.2) 

where the quantity d~i/dx~ describes the velocity of the point xi relative to the point x~ = ai, meas­
ured at the time x~. Upon going to the limit (shrinking the object to a point at its center of gravity) this 
leads to ( 3.1 ), as expected. As for the ratio dx~/dx0 , it is easy to expand it in ll.: 

q a = dx~ I dx0 = d-ra I d-r = 1 + A 4q a + o • o 

4 
( 3.3) 

(the equation uaua = 1 must be solved for dx~/dx0 by approximations or by Landau's Eq. (82.7). In 
the absence of rotation, this reduces to unity. Substituting ( 3.2) into ( 1.3), taking account of ( 3.1) and 
( 3.3 ), and introducing the delta-functions, we obtain 

ya~ = ~ T~~, 
a 

(3.4) 

Here rna has an expansion in the form of (2.2), but is not the same as the rna in (1.2). The pseudovec-
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tor O'a has the expansion 

a a = /,a a + ),3a a+ ... , 
1 3 

( 3.5) 

since we naturally require that the tensor density TOl{3 in (3.4) have an expansion of the form (2.3) in A.. 
ai = dai/dr, and "i1 operates on oa = o (xi- ai). V.'hen O'a = 0, (3.4) reduces to (1.2). Notice also t~at 
in the following derivation of the equations of motion,, in the Newtonian approximation, we make use of T01 

and Tik but no terms of higher order, so that in ( 3.4) we may put % = 1. 5 

6 ...., f3 
Once TO' has been found, we can obtain the equations of motion from ( 1. 5). But now, in addition to 

the 4n unknown functions rna (r) and ai (T ), which in the absence of rotation are completely determined 
by the 4n ordinary differential equations ( 1.5 ), another 3n unknown functions u J ( T) make their appear­
ance. Equations ( 1.5) must therefore be supplemented by the 3n equations 

(' ( ;y~k" 1'~T 1") dV 0 ~ X ;~-X ;::x = , ( 3.6) 
Va 

from which the equations of rotational motion are to be derived, and which also arise from Einstein's grav­
itational equation ( 1.1 ). The derivation of equation ( 3.6) is completely analogous to the derivation of ( 1.5) 
if we start with the covariant expression 

4. The derivation of the equations of motion requires a knowledge of the metric, to the corresponding 
order of approximation, which means that h00 , hik• hoi• and h00 have to be determined from ( 1.1). 

2 2 3 4 
In our case the equations for determining h00 and hik are identical with the corresponding equations 

2 2 
of Infeld, 10 and therefore they have the identical solution 

hoo = - 2] ma I r a, r a = I r - a I, 
2 a 2 

However, the equations which determine hoi are no longer the same as Infeld's, but are of the form 
3 

We write the solution to this in the form 

m Qi 

h01 = 4 ]~- 2 ~ma [aax\1 +-] 1
, 

3 a 2 1 a a a 

( 4.1) 

( 4.2) 

( 4.3) 

( 4.4) 

which differs from the corresponding expression in Infeld's paper10 by the presence of the second term. 
Comparing the latter with ( 100-7) [sic!] in Ref. 14, we are led to an explanation of the physical signifi­
cance of O'a; this is nothing but the specific angular momentum for the a-th particle: Ma = maO'a· 

Knowing h0o, hik• and hoi• we can derive the third, fourth, and fifth order equations of translational 
2 2 3 

motion, as well as the fourth order rotational equations, from Eqs. (1.5) and (3.6). In the third order, 
the equations of translation ( 1.5) lead to thl! relation 

ma = const; 
2 

in the fourth order, to the Newtonian equations of motion 

maii1 = ] (mamb I r ab) al ; 
2 b+ a ~~ 2 ' 

and in the fifth order, to a value of rna identical with that of Infeld: 10 

4 

( 4.5) 

( 4.6) 

( 4.7) 
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where Ca is a constant, and rab = 1 a - b 1. So far there has been no effect due to the rotation- all the 
4 

integrals containing u vanish-and our results (4.5) to (4.7) agree with Infeld's. The manipulations re-
quired to derive ( 4.1) to ( 4. 7) are completely analogous to his 10 and need not be discussed in detail. 

The equations of rotational motion ( 3.6) in the fourth (lowest) order, after a short, straightforward de­
velopment, lead to the simple relations 

M:/' = 0, M~k = canst; for aa = 0, C1a =canst, ( 4.8) 
3 3 1 1 

where 
M~k = olklmacs~ ( 4.9) 
3 2 1 

( c5Ud = ± 1, c5 123 = 1 is a completely antisymmetric pseudotensor). Thus in this Newtonian approximation 
the angular momentum of each spherically symmetrical object is individually conserved, as expected. 

5. Derivation of the sixth-order rotational equation of motion requires a knowledge of hoo· Infeld10 

4 
carried out a detailed derivation of those terms in hoo which affect the sixth-order equations of motion 

4 
without rotation. Therefore in this paper we shall consider only the additional terms h~o due to the rota-

4 
tion. By methods similar to Infeld's, we arrive at the following equations for h!o: 

4 

( 5.1) 

. ,, (··r 1]· 1 [ 1]•) hoo = 2 .L.J rna a Cia X v- - 4 [Cia V]• C1a X v- . 
4 a 2 L1 r a 1 1 r a 1 

( 5.2) 

Now by virtue of the linearity of the original differential equations, up to terms involved in the sixth­
order equations of motion for the a-th object, hoo may be expressed in the form 

4 

( 5.3) 

All the terms on the right hand side, with the exception of 11!0, are already available. They describe the 
4 

field for non-rotating particles to the indicated degree of approximation. 
The sixth -order translational equations of motion (or the second approximation, according to V. A. 

Fock's terminology) for body a is given by the expression 

\ -;~ \ [-;o -;s 1 -oo 1 -oo 
~ (T;~)dV=) T.o+T.s+2hoo;IT +2(hoo,;+h00h00;;-2hoi,o)T 

Va 6 Va 51 6 2 4 4 2 2 3 1 2 

+ (h h ) -Tos h ~T01 h T~si 1 h r·-···] dV 0 os,i- Oi,s - oo,o - oo,s + 2 oo,l = · 
3 s 3 213 2 4 2 4 ( 5.4) 

If into this we substitute ( 4.1 ), ( 4.4 ), and ( 5.3) without the rotational terms, we obtain the well-known 

non-Newtonian equations of translation given, for example, by .Papapetrou8 and reducing to the expressions 
given by Einstein3•5 and Petrova1 for the case of two particles. A detailed derivation, using delta-func­
tions, is given for the two-body problem by Infeld.10 Since the n-body problem introduces nothing funda­
mentally new, we limit ourselves here to a derivation of the additional rotational terms D~ in the equa­
tions of motion which do not appear in the detailed calculations mentioned above. If into ( 5.4) we substi­
tue h00, hoi• and h00, as well as the value of TafJ to the required approximation, and take out the terms 

2 3 4 
containing u, we note that some of the integrals vanish identically while others vanish because the inte-
grand is an odd function, and we finaHy obtain the simple and relatively short expression 
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(here Y' = eio/aai ). The relativistic equations of translation can now be written in the form: 

( 5.6) 

where F~ are the terms to be added to the Newtonian forces if rotational effects are ignored, and which are given, 
for instance, byPapapetrou~ Expressions ( 5.5) and ( 5.6) are written in the usual c.g.s. system of units. To 
transform to this system from the original system of units, we first eliminate the parameter A. by introducing 
new units of time and mass according to the formulae: old T =newT x A.; old mass =new mass X A. - 2• We then 
introduce the usual values of Newtonian constant y and the speed of light c. To do this we must replace m by 
ym, insertthefactor c-2 ontherighthandsidein D~, andrememberthatwhentakingtimederivatives (repre­
sented by dots over the variables) the vector components are to be differentiated with respect to the usual time 
variable t. Then rna and mb are the Newtonian masses, and O'a and O'b are the Newtonian angular momenta 
of the objects (ifthe preceding terms rna, mb, O'a, and O'b are constants). As to the structure of the D~, 

2 2 1 1 
notice that one group of terms (the first four terms) describes a "spin-orbit" interaction between the par-
ticles, while another group (the remaining terms) describes a "spin-spin" interaction. These interactions 
lead to some additional forces which will effect the orbital motions of the particles. 

6. We now can derive the sixth-order equations of rotational motion. From ( 3.6) we have 

(6.1) 

The expressions for T~~ are given in ( 5.4 ). Relatively simple and straightforward calculations show 
6' 

that some of the integrals vanish,* and that the remainer lead to the following non-Newtonian equations 
of rotational motion (again we have transformed to the c .g.s. system): 

Here, as in (5.5), rna, mb, ... and O'a, O'b, ... represent the Newtonian (i.e., constant) values of 
mass and specific angular momentum of the objects a, b, ... ; M~~o) denotes the Newtonian (constant) 

angular momentum of the a-th object, obtained by expressing ( 4.9) in the c.:g.s. system. The left-hand 
side of ( 6.2) is :M:lk = dMlk/dt, the time rate of change of angular momentum of the a-th object in the 
first non-Newtonian approximation (including the effect of mass changes due to velocity). An expression 
for the angular momentum can be obtained from 

j 

M ik ) 3Mik + 15Mik _ 13' 1 + 1 5 , ( 1 + 1) a = \ a A a =A OatZmaOa A Oikl ma'ja maaa I 

3 5 21 41 23 
(6.3) 

*In particular, it is found that 

~ [(xi- ai)hoo,k- (xk -- ak) hoo.d fODdV = 0, 
Va 4 4 2 

where h00 does not refer to the approximation of ( 5 .. 3 ), but to its exact value. Hence we may conclude 
4 

generally that h00 does not affect the sixth-order equations of rotation. 
4 
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by transforming to c.g.s. units. 
The relativistic equations of rotational motion ( 6.2 ), thus developed, contain two fundamentally distinct 

groups of terms. One group (the first three terms) describes the "spin-orbit" interaction, while all the 
remaining terms describe the "spin-spin" interaction of the objects. We shall see that the existence of 
these interactions alters the angular momentum of spherically symmetrical objects even in the first non­
Newtonian approximation. 

7. It is not the object of this paper to make a detailed study of the equations of motion which have just 
been derived. Nevertheless, we must satisfy ourselves that they do not conflict with any known facts. For 
example, it is well known ( cf. Landau and Lifshitz, 17 pp. 291 and 341) that in the gravitational field of an 
object b of mass mb and angular momentum Mb, a light non-rotating particle a of mass rna is acted 
on by a force, analogous to a Coriolis force, equal to 

( 7.1) 

To compare ( 5.5) with ( 7.1) we have to put bS = 0, O'a = 0, and omit the summation sign. A few trans­
formations applied to the resulting expression does in fact lead to ( 7.1 ), plus the last term of ( 5.5 ), which 
has not previously been derived. 

It is also interesting to compare our results, in a general way, with those obtained by Fock.9 If Fock's 
extra translational and rotational terms are applied to infinitesimal spherical particles, we obtain a group 
of terms corresponding to the first four terms of ( 5.5 ). (We naturally ignore those terms in Fock's equa­
tions which arise from the internal structure of the objects, since this has no meaning in the present 
case.) Fock's equations contain no terms quadratic in u and none of the fourth order in 1/rab• since 
his method uses not only a development in the parameter vIc but also a development in the parameter 
L/R ( L being a characteristic linear dimension of the objects and R the distance between them) and 
the development is broken off at terms of the third order in L/R. For large separations (as in systems 
of astronomical bodies) the terms in r-t are not essential; but for systems such as double stars (close, 
massive pairs) these terms could possi&y make a significant contribution. 

In conclusion, the author would like to express sincere thanks to I. Z. Fisher for proposing this subject 
and for his constant interest in the present work. 
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