mesons: $a_{-} = 0.54 \pm 0.024$, $b_{-} = 0.34 \pm 0.058$, $c_{-} = 0.90 \pm 0.098$.

b) Gamma emission from π^0 meson decay; $a_{\gamma} = 1.87 \pm 0.24$, $b_{\gamma} = 2.89 \pm 0.44$, $c_{\gamma} = 2.32 \pm 0.59$. The angular distribution of the π^0 mesons can be easily obtained from a_{γ} , b_{γ} , and c_{γ} . One obtains $a_0 = 0.68 \pm 0.20$, $b_0 = 1.80 \pm 0.27$, $c_0 = 1.90 \pm 0.50$.

The total elastic cross-section as determined by the above angular representation is (10.7 \pm 0.6) \times 10^{-27} cm²; the total exchange cross-section is (16.6 ± 1.4) × 10^{-27} cm². The total cross-section for π^{-1} meson interaction with hydrogen is $(28.8 \pm 1.8) \times 10^{-27} \text{ cm}^2$ where we have included the production of mesons by mesons¹ to the elastic and exchange contributions. For comparison one may cite the meson attenuation measurements in hydrogen² which gave a total cross-section of $(25.7 \pm 1.0) \times 10^{-27} \text{ cm}^2$.

²Ignatenko, Mukhin, Ozerov, and Pontecorvo, Dokl. Akad. Nauk SSSR 103, 45 (1955).

Translated by A. Skumanich 269

SCATTERING OF 307 MEV NEGATIVE π Mesons by hydrogen with charge **EXCHANGE**

V. G. ZINOV and C. M. KORENCHENKO

Joint Institute for Nuclear Research

Submitted to JETP editor August 5, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1308-1309 (November, 1957)

WE have measured the angular distribution of γ rays emitted in the decay of π^0 mesons which were formed by exchange scattering of π^- mesons by hydrogen $(\pi^- + p \rightarrow \pi^0 + n)$. The π^- meson beam was obtained by the use of the synchrocyclotron of the Joint Institute for Nuclear Research. The energy of the

∳° _{cms}	$\frac{d\sigma}{d\omega}$, 10 ⁻²⁷ cm ² /sterad
20.5 40.5 59.2 76.8 98.0 128.1 146.4 159.4	$\begin{array}{c} 9.80 \pm 2.02 \\ 8.46 \pm 1.74 \\ 4.05 \pm 0.83 \\ 2.24 \pm 0.46 \\ 1.50 \pm 0.31 \\ 1.40 \pm 0.31 \\ 1.32 \pm 0.30 \\ 1.32 \pm 0.29 \end{array}$

 π^- mesons was measured at 307 ± 9 MeV as obtained from range measurements in copper. Scintillation counters were used to obtain the data. Liquid hydrogen which was contained in a foamed polystyrene container was used as the target.

The measured differential cross-section for gamma ray emission in the center of mass system is presented in the table. These crosssections include all necessary corrections.

A least squares fit of the function $d\sigma/d\omega = a + b\cos\vartheta + c\cos^2\vartheta$ (ϑ measured in center of mass system) to the data results in the following values for the coefficients (in units of 10^{-27} cm²/sterad):

 $a_{\gamma} = 1.87 \pm 0.24$, $b_{\gamma} = 3.30 \pm 0.53$, $c_{\gamma} = 3.14 \pm 0.71$. From these coefficients one can easily obtain the angular distribution of π^0 mesons and one finds $a_0 = 0.57 \pm 0.23$, b_0 $= 2.10 \pm 0.34$, $c_0 = 2.67 \pm 0.60$.

The total cross-section for charge exchange scattering as determined by the above angular distribution is $(18.4 \pm 1.6) \times 10^{-27} \text{ cm}^2$. Adding this cross-section to the elastic scattering cross-section¹ and including meson production by mesons² one obtains a total interaction cross-section for π^- meson in hydrogen of $(30.2 \pm 1.8) \times 10^{-27}$ cm². Meson attentuation measurements in hydrogen³ yield a total interaction cross-section of $(3.16 \pm 1.6) \times 10^{-27}$ cm² (interpolated to 307 Mev).

In the accompanying figure the four dashed curves represent calculations based on four sets of phase shifts. These were obtained¹ from a preliminary phase analysis of elastic scattering of π^- mesons by hydrogen where one assumed that only the S and P states participate in the scattering. The measurements of the present work are indicated in the figure.

¹V. G. Zinov and C. M. Korenchenko, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 301 (1958), Soviet Phys. JETP 7 (in press).

1008

LETTERS TO THE EDITOR

The solid curve represents $d\sigma/d\omega = 1.87 + 3.30 \cos \vartheta + 3.14 \cos^2 \vartheta$. It is apparent that none of the computed γ distribution curves agree with the measured distribution, as was pointed out earlier.¹

¹V. G. Zinov and C. M. Korenchenko, J. Exptl. Theoret. Phys.

²V. G. Zinov and C. M. Korenchenko, J. Exptl. Theoret. Phys.

³Ignatenko, Mukhin, Ozerov, and Pontecorvo, Dokl. Akad. Nauk SSSR 103, 45 (1955).

Translated by A. Skumanich 270

EFFECT OF QUANTUM FLUCTUATIONS IN THE ELECTRON RADIATION OF THE SYNCHROTRON OSCILLATIONS

E. M. MOROZ

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor August 10, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1309-1310 (November, 1957)

LHE problem of quantum fluctuations in the radiation of electrons in the synchrotron has been considered in a series of articles (see, for example, Refs. 1-4).

In this note we generalize the well known results of Sands,³ namely, we take into account the damping of synchrotron oscillations caused by the increase in electron energy, and give several practical results.

Putting the damping coefficient

$$\rho = \frac{E}{E} + \frac{3-4n}{1-n} \frac{2ce^2}{3R^2} \frac{\gamma^3}{1+\lambda},$$
 (1)

where $\gamma = E/mc^2$, $\lambda = N\ell/2\pi R$, ℓ is the length of the straight section of the race track, N is the number of sections, into the phase equation of the synchrotron it is possible to obtain a formula for the stationary value of the mean square amplitude for synchrotron oscillations

$$\langle A_{\varphi}^2 \rangle = \frac{55\sqrt{3}}{32} \frac{\hbar cq \cot \varphi}{e^2 \left(1 + \lambda\right)^2 \left(3 - 4n\right) \gamma} F_1 F_2.$$
⁽²⁾

This expression differs from the result of Sands³ by the presence of the factor F_1F_2 , where

$$F_1 = \left(1 + \alpha \frac{1-n}{3-4n} \frac{\dot{E}}{P}\right)^{-1}; \quad F_2 = \left(1 + \frac{\dot{E}}{P}\right)^{-1}; \quad P = \frac{2ce^2}{3R^2} \frac{\gamma^4}{1+\lambda},$$

and α is a coefficient of order unity. At energies of several hundred Mev the factor F_1F_2 is important and, essentially, determines the energy dependence of $\langle A_{\varphi}^2 \rangle$. Analysis of Eq. (2) shows that there is no danger of particle loss connected with a maximum of $\langle A_{\varphi}^2 \rangle$ which, under the assumption $\cot \varphi = \text{const}$, occurs for $P = 7E\alpha(1-n)/(3-4n) \approx 1$. The condition $\cot \varphi = \text{const}$ is, in fact, superfluous. Employing another law of increase for the accelerating voltage, it is easy to avoid this maximum.

At high energies where $F_1F_2 \rightarrow 1$, using results obtained by Sands,³ one can find the excess of the amplitude of the accelerating voltage over the value of the amplitude, necessary to accelerate the elec-

⁽U.S.S.R.) 33, 335 (1957), Soviet Phys. JETP 6, 260 (1958).

⁽U.S.S.R.) 34, 301 (1958), Soviet Phys. JETP 7 (in press).