LETTERS TO THE EDITOR

MEASUREMENT OF POLARIZATION QUANTITIES

A. G. ZIMIN

Submitted to JETP editor June 27, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1300 (November, 1957)

To determine in practice the polarization $\langle \sigma_i \rangle$ and the polarization correlation $\langle \sigma_{ik} \rangle$ in nucleonnucleon scattering, one measures the integral intensities of the nucleons subjected to secondary scattering by analyzer nuclei. Let us consider how the polarization formulas vary for "point" intensities (see Refs. 1 and 2) when integrating over a solid angle.

The total scattering cross section of nucleons by analyzers with spin zero is

$$\sigma(\theta_1, \theta_2, \theta) = J_1(\theta_1) J_2(\theta_2) \{1 + \langle \sigma_{1i} \rangle n_{1i} P_1(\theta_1) + \langle \sigma_{2i} \rangle n_{2i} P_2(\theta_2) + \langle \sigma_{ik} \rangle n_{1i} n_{2k} P_1(\theta_1) P_2(\theta_2)\},$$
(1)

where $\theta_1(\theta_1, \varphi_1)$ and $\theta_2(\theta_2, \varphi_2)$ are the angles of scattering by analyzers 1 and 2, $J_{1,2}$ and $P_{1,2}$ are the cross sections and the polarizations, respectively, while n_1 and n_2 are the vectors normal to the planes of these scatterings, along whose directions the integration is carried out.

Integration with respect to φ_1 and φ_2 in a cone 2φ gives, for example, for the normal correlation (relative to the nucleon-nucleon scattering plane)

$$\langle \sigma_{nn} \rangle = \frac{J_{++} + J_{--} - (J_{+-} + J_{-+})}{J_{++} + J_{--} + J_{+-} + J_{-+}} \frac{1}{P_1 P_2} \frac{\varphi^2}{\sin^2 \varphi} , \qquad (2)$$

where, for example, $J_{++} \equiv \sigma(\varphi_1 = 0, \varphi_2 = 0)$ and $J_{+-} \equiv \sigma(\varphi_1 = 0, \varphi_2 = \pi)$ etc. Integration over the polar angles does not change the structure of formula (2), but the quantities J and P become integral (with respect to θ_1 and θ_2).

Compared with $\langle \sigma_{nn} \rangle$ for point intensities, formula (2) contains a factor $\alpha(\varphi) = \varphi^2 / \sin^2 \varphi$, which varies from 1 (at $\varphi = 0$, corresponding to "point" intensities) to ∞ (for $\varphi = \pi$, corresponding to integration over the total sphere). It is seen from formula (2) that increasing the count intensity (increasing the aperture of the 2φ counters) leads to a reduction in the asymmetry of the scattering

$$\varepsilon = \frac{J_{++} + J_{--} - (J_{+-} + J_{-+})}{J_{++} + J_{--} + J_{+-} + J_{-+}},$$

and consequently, to an increased error in $\langle \sigma_{nn} \rangle$. The optimum 2φ aperture can be determined from the minimum error. An estimate yields $\pi/2 \leq 2\varphi \leq 2$. The quantity $\alpha(\varphi)$ can be called the coefficient of "smearing" of the asymmetry of scattering. When measuring the polarization, this coefficient turns out to be $[\alpha(\varphi)]^{1/2}$. Corresponding formulas, analogous with (2), are obtained if only one analyzer is considered in (1), as proposed Ia. A. Smorodinskii.

¹Ia. A. Smorodinskii and V. V. Vladimirskii, Dokl. Akad. Nauk SSSR 103, 713 (1955).

Translated by J. G. Adashko 264

²Ia. G. Zimin, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1239 (1957).