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It is shown that the production of energetic nuclear fragments in collisions with fast nucleons 
can be interpreted in terms of collisions of the incoming nucleon with the density fluctuations 
of the nuclear matter. 

1. INTRODUCTION 

THE motion of nucleons in nuclei can result in short-lived tight nucleon clusters, in other words, in 
density fluctuations of nuclear matter. Since such clusters are relatively far removed from the other 
nucleons of the nucleus, they become atomic nuclei of lower mass in a state of fluctuating compression. 

In their study of the scattering of 675-Mev protons by light nuclei, Meshcheriakov and coworkers1•2 

observed recently certain effects which confirm the existence of such fluctuations, at least for the sim
plest nucleon-pair fluctuations, which lead to the formation of a compressed deuteron. 

We recall in this connection reports in earlier works3•4 that high-energy nucleons can split nuclei into 
"supra-barrier" fragments, i.e., fragments with an energy much larger than their binding energy and the 
energy of the Coulomb barrier. However, there was a lack of quantitative experimental data on which to 
base the theoretical analysis. 

Some authors related this curious process, without foundation, to hypothetical long-range nuclear for
ces. Others tried to connect it with nuclear many-body forces. 

The experimental data on the emission of high-energy deuterons from light nuclei give support to the 
idea that "supra-barrier" fragments are produced also by direct collision of an incoming nucleon with 
a tight nucleon cluster that results from density fluctuations of the nuclear matter. We offer in the fol
lowing a quantitative argument in favor of the production of fast deuterons and other "supra-barrier" 
fragments by such fluctuations. 

Concerning the nuclear many-body forces, it should be noted that, according to existing estimates, 5 

there is no reason to believe that they are considerably stronger than the two-body forces. At the instant 
of dense clustering both paired and collective interactions may take place. However, at present there 
exists no experimental information which would allow an explanation of this interaction, or in particular 
allow a determination of the relative contributions of the paired and the collective interactions. 

2. INTERACTION OF DEUTERONS WITH FAST PROTONS 

It was shown experimentally1•2 that scattering of 675-Mev protons by deuterium produces, in addition to 
scattered nucleons, a small number of undestroyed deuterons of high energy (up to 660 Mev). This shows 
that in such collisions the nucleon imparts an appreciable fraction of its momentum to the deuteron as 
a whole. 
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According to the fluctuation representation, this collision takes place at a time when the nucleons of the 
deuteron are at a close distance R and are strongly interacting. Under these conditions the incoming 
nucleon can transfer its momentum to the tight nucleon pair as a whole. The cross section to be expected 
for such a special collision will be 

(1) 

where ad is the total cross section for quasi-elastic collisions and W d (R) is the probability of finding 
the two nucleons of the deuteron at a distance less than R. The distance R has to be of the order of the 
range of the strong nuclear interaction, i.e., (2- 3) 11/Mc. Denoting the wave function of the deuteron by 
1/Jd (R), we have 

R 

W d (R) = 47t ~ tji~ (r) r2 dr = ~ tj/2 (0) R3 • 
(2) 

0 

In order to calculate W d (R) one has to know the deuteron wave function close to r = 0. The usual 
asymptotic wave function 1/Jd = ../ a/27Te-O!r /r (1/ a = 4.3 x 10-13 em) is completely useless for this purpose, 
since it approaches infinity for r = 0. The deuteron wave function has no singularities. Therefore we can 
approximate u = ri/Jd by ·.fal'i e-ar for large r and by u = 1/J ( 0) [ r - {3r2 + ••. ] for small r and match 
the functions and derivatives at r = b = 1/2{3. The quantity 2{3 is the logarithmic derivative (1/J'/1/J )0• This 
yields 1/J(O)...., {3../a/271'. 

Using Hulten's function 

We obtain the same result. According to known data f3 is a few times larger than a. Restricting our
selves to an order-of-magnitude estimate, we have 

tjid (0) = ~ v rx.j27e, (3) 

where the quantity f3 is to be considered as determining the logarithmic derivative of the deuteron wave 
function at r = 0. 

From (2) and (3) we find 
2 

Wd{R) = 3 rx.~ 2R3 • (4) 

Expressing R in units of 11/Mc = 2 x 10-14 em this becomes 

(4') 

The experimental value for this quantity is 7 x 10-3• Thus R3 ({3/a)2 ...., 102, a fully reasonable value. 
We note that neither the pick-up theory nor the impulse approximation are applicable in the present 

case. In both these theories it is assumed that the incoming nucleon interacts either with -one nucleon or 
with two nucleons, but in an independent fashion. In the present case the momentum transfer is so large 
that the process is due to very high harmonics of the deuteron wave function, i.e., to such states in which 
both nucleons are very close together. One therefore cannot consider their collision with a third nucleon 
as an independent event. 

For other light nuclei, an estimate of the function W(R) is still more difficult. For tritium, for ex
ample, we find that W T(R) is approximately on the order of wa_ (R), with a correction for the fact that 
the quantity O!T will be larger than 0! by a factor ../mTET/mdE d (here ET and Ed are the binding 
energies of tritium and deuterium respectively; mT and ffid are reduced masses of tritium and deu
terium, respectively, relative to one nucleon removed from the nucleus). This reduction of aT reflects 
the fact that the tritium represents a tighter nucleon cluster than the deuteron. 

For He, similarly, O!He will be larger than 0! by a factor ../mHeEHe/mdEd. 
Taking the above value for Wd(R), we find WT...., 2 x 10-4 and WHe...., 2 x to-5• 

These numerical values can be checked experimentally. 

3. ESTIMATE OF THE FLUCTUATIONS IN NUCLEI 

Let the wave function of a nucleus A = Z + N be 

'Y A = 'Y A (xl, X2, ... , xz; Y1• Y2• • · ., YN), (5) 
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where X1, x2, ••• are the coordinates of the protons, and y1, y2, ••• the coordinates of the neutrons. As 
is well known, the density operator, say of the protons, is given by 

z 

p (x) = ~ a (x- Xk)· 
k~l 

Similarly, ene can introduce a second-order density operator 
z 

(6) 

p (x, x') = ~ a (X- Xk) ()(X- X8 ). (6') 
k+s 

In general the density operator of order a, involving z protons and n neutrons (a = n + z), will be 

p(x,x', ... x<z>; y,y', ... y<n>)= ~ B(x-xk)B(x'-X8 ) ••• ,B(y<n>-yn)· 
kcf=S=I= ••• 

The mean value of this density is 

In order to obtain the exact value of this integral, one needs to know the wave function -.¥A- However, 
one can find an estimate of (8) by observing that the integral should be equal to 

(7) 

(8) 

p (x, x', ... .y<nJ) =MD (x, x' ... x<z>, y, y', ..• y<n>), (9) 

where D is the probability density for the protons (z) and neutrons (n) to be at the positions (x, 
x', ..• y (n)), and M is equal to the number of permutations of the protons and the neutrons that would 
realize this configuration. 

We are interested in the case where the relative coordinates of these nucleons, ~ 1 , ~ 2 , ••• ~a-1 , are 
within a small volume Q < R3• Introducing further the center-of-mass coordinate of the cluster, X, and 
integrating with respect to ~ 1 , ~ 2 ••• ~a-t over the volume Q and with respect to X over the nuclear 
volume, we find 

Pa (n) = MW a (R), (10) 

where 

Wa (R) = ~ D (~1• ~2· ••• ~a--1 X)d~l· .• d~a-ldX (11) 
(l 

is the probability for such a cluster, compressed into the small volume Q, to appear. 
Since only small values of R are of interest, this probability is close to the probability of a similar 

density fluctuation of a free nucleus of atomic number a= n + z. This allows the determination of this 
probability from studies of collisions of a nucleon with a free nucleus (A).* 

For light nuclei, M is the number of states by which one can construct the cluster of interest, i.e., it 
is roughly proportional to z2• 

On the other hand, in nuclei where the density of nuclear matter is distributed like in a liquid drop, the 
number M will be proportional to the number of fragments with a = z + n contained in the nucleus; it 
thus is proportional to Z. In heavy nuclei one further has to account for the probability, P, that an en
ergetic fragment will leave the nucleus from a certain depth. 

Assuming that the energetic fragments appear uniformly with the volume of the nucleus, move in the 
direction of the momentum of the incoming fast nucleon, and have a mean free path 

l = Ijn0aa, (12) 

(where n0 is density of nucleons in the nucleus, and aa...., 1rr~a2/3 is the cross section of a fragment of 

* Leksin and Kumekin6 have made an attempt to determine this probability for carbon from (p, C) col
lisions. Within the accuracy of this experiment, they did not observe energetic protons scattered back
wards from the carbon as a whole. From the estimates made above for T and He, one can conclude 
that the probability for an appropriate fluctuation in carbon is completely negligible. 
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atomic weight a) it is easy to show that the probability that the fragment will emerge from the nucleus is 

p = ]_ [!_- ___;._ -1- (_!_ + _;.._ \ e-1l] 
1] 2 1]" ' 1] 1J' ) ' 

(13) 

where 11 = D/£, and D == 2r0A113 is the diameter of the nucleus. In particular, if P A« 1 then 

Combining all factors, we obtain for the production of a fast fragment of atomic number a from a nu
cleus of atomic number A the following cross section 

(14) 

while the yield of fragments a per collision is given by 

qa =PM ( Oa I crA) W d (R.) = (MIA) W a (R.), (15) 

where crA is the total cross section of the target nucleus. 
We now consider the special case of the deuteron (a= 2). For light nuclei the number M will be given 

by the number of ways in which a deuteron can be obtained from the nucleons of the nucleus. In the deu
teron, the spins of the neutron and proton are parallel. Therefore Md = 2 (ZN/4) = i ZN. We thus have 
for deuterons produced from light nuclei 

(16) 

For heavy nuclei, owing to saturation of nuclear forces, we have Md = Zn, where n is the number of 
neutron neighbors of a proton with antiparallel spin. This number is ,.., 6. We therefore have for heavy 
nuclei 

(16') 

The yield for this case is almost constant: 

q~ = (Znl A) Wd(R). ( 15') 

Considering that crd = 70 x 10-2'1 cm2 and W d (R),.., 7 x 10-3, we have from (16) the following values for 
~d in millibarns: 

Element 

~d 

Li 
1.4 

Be 
2.1 

c 0 
3.6 5.8. 

" As for heavy elements, we expect, according to (15), a deuteron yield <I<!,.., 2%. 
The obtained results agree essentially with the experimental values.* A more conclusive check could 

be obtained from a study of deuteron yields from heavier nuclei. 
We further note that the given estimate of density fluctuations of tritium, W T (R) ,.., 2 x 10-4, leads to 

an expected tritium yield of 2-3% of the deuteron yield. This is not in disagreement with Ref. 1. 
Quantitative calculations for fragments heavier than deuterons lack a sufficient theoretical foundation. 

It would therefore be of great interest to determine experimentally the probability of large momentum 
transfers for such nuclei. It would then be possible to calculate the yield of such fragments from heavy 
nuclei. 

In conclusion the author expresses his thanks toM. G. Meshcheriakov and G. A. Leksin for many val
uable discussions. 
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