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The response of a system with three levels (E 1, E2, and E3) to an alternating field with har
monics w31 = (E3-E1)/Ii, w21 = (E2 -Et)/li, and w32 = (E3 -E2)/Ii is examined. An expres
sion which can be used in the theory of quantum oscillators or amplifiers, is derived for the 
dielectric constant (or magnetic permeability). 

MucH attention has lately been paid in radio spectroscopy to various kinds of quantum-mechanical 
amplifiers and oscillators (see, for example, Refs. 1-10). One proposed system employs three para
magnetic-resonance energy levels.' It is therefore interesting to consider the effect of an alternating 
high-frequency field on a system with three energy levels. 

Let the system considered have levels E1, E2, and E3 and let E1 < E2 < E3• Furthermore, let the 
system be under the influence of high-frequency field F, whose spectral expansion includes harmonics 
with the following frequencies: 

~1 = (Es- E1)/1i; (l)a1 = (Ea- E1)j1i; (l)a2 = (Ea- E2)/li. 

It is the aim of this work to investigate the behavior of the system in the presence of such a field. 
The system can be described with the aid of an density matrix p. The latter obeys the equation 

op i 8p ot = -y (Hp -pH) +at • (1) 

where H is the Hamiltonian of the system in an external field, 6p/6t is the change in the density matrix 
resulting from various kinds of relaxation processes. If the relaxation is due to collisions in a gas, it is 
possible to show (see, for example, Ref. 11), that 

8p / 8t = - 't-1 (p - p0), (2) 

where T is the relaxation time and Po is the density matrix in the equilibrium state. Obviously, a similar 
equation describes the transition to the equilibrium state in paramagnetic systems (see, for example, 
Ref. 12). Thus, collecting (1) and (2), we get 

apj at=- (i /11.) (Hp- pH)- 't-1 (p- p0). (3) 

This equation can be readily generalized by considering that in radio spectroscopy, generally speaking, 
two relaxation times T 1 and T2 are used. Here T 1 corresponds to the relaxation of the system level 
population, and ,-2 is the relaxation of the average dipole moment of the system, i.e., on the average, 
within a time Tt the diagonal elements of p go into Po in the absence of a field, and within a time ,-2 the 
average dipole moment of the system becomes equal to zero (i.e., the non-diagonal elements of p vanish). 
Our generalization will then be that the quantity ,.-t (p- p0) of Eq. (3) is a matrix of the form 

_ {( 't;-1 (p- Po)mn for m = n 
['t 1 (p- Po)]mn = 1 

t 't;;- (p- Po)mn form =f=n. 

In the presence of an alternating electrical or magnetic field, the Hamiltonian of our system is 

H = H0 -~J.F(t), 

(4) 

(5) 

where p. is the electric or magnetic dipole moment (and accordingly F is either an electric or a mag
netic field). In a representation in which the operator H0 is diagonal and has eigenvalues E1, E2 and 
E3, Eq. ( 3) becomes 
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ilp rnn • i ~..., -I · ' 
(it+ lWm Pmn = T F ~ (fl.mlPln- Pmlfl.ln)- ('t: (p- Pu)lmnt 

1=1 

where m, n, = 1, 2, 3; Wmn =(Em -En)/11. 
We shall seek a solution of these equations for 

F = F 31 cos 0 3It + F32 cos 0 32t + F21 cos 0 21t, 

where 

Using condition (8) and introducing 

Dmn = Pmm- Pnn• Domn = Ponzm- Ponn • 

we obtain the approximate equations 

iiPmn . + -1 ( ) i FD · (it + lWmnPmn 't:2 Pmn - Pomn = li fl.mn nmo 

0~13 + 't:i""1 (Dis- Do1s) = {- F [2 (fi.IsPs1- Pis!LSl) + (!L12P21- P12!J-21)- (fl.s2P2s- Ps21-L2s)]; 

0~23 + '>i""1 (D2s- Do2s) = {- F [2 (!L2sPs2- P2s!Ls2) + (!L21P12- Pnfl-12)- (!LslPts- Psl!Lls)J. 

We shall seek solutions of (10)- (13) in the form* 

Pmn = p~-J;,> exp {iOmnt} + p~-;,> exp {- iOm,.t} (Omn = 0""'), m =/= n, 
Dmn = const. 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
(15) 

We neglect here the higher harmonics and non-resonant terms, which is fully justified if condition (8) 
is taken into account. 

Since the equilibrium matrix Po is diagonal, we obtain from Eq. (10) 

p~;!;{ = (i / 2fi) F mn!LmnDmn / [i (wmn + Omn) + 't:;-1]; 

Here F mn = F nm. From (11) - (13) and (16), using again condition (8), we get 

D12 ( 1 + 21.12)- D2s12s + D1311s = Do12; 
- D12112 + D2s ( 1 + 2123) + Dr31ls = Do2s; 

D12112 + D2312s +Drs ( 1 + 211s) = Do13• 

where 

From Eqs. (16), (17), and (18) we get 

1 
D12 = [l [Don (1 + 212s + 211s + 312s11s)- Dois11s ( 1 + 3123) + Do2s123 ( 1 + 3113)], 

i 
D2s = [l [Do23 ( 1 + 21I2 + 2113 + 311s1I2)- DoiS11s ( 1 + 3112) + Do12112 ( 1 + 311s)J, 

*The transient process will not be considered. 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 



where 
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li = I + 2 (T12 +T2s + Tls) + 3 (T12T1s + T12T1a + T2sT13), 

Dmn = - Dnmo P~) = (ph~) * • 

The last equality follows from the fact that the matrix p is Hermitian. 
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(23) 

(24) 

(25) 

(26) 

In addition to the quantities (22) -(24) and their complex conjugates, there is a whole series of quanti
ties, such as p~;>, p(-), etc., which can be neglected in this approximation. 

With the solution bbtained it is possible to find the average dipole moment of the system using 

3 

P = Sp (pJJ.) == ~ Pmn!Lnm (27) 
m, n-1 

to calculate the dielectric constant (or magnetic permeability) at the frequencies fl 31, flw and fl32 , and to 
obtain the absorption coefficient at these frequencies. 

Let us derive the corresponding formulas for resonance at the frequency fl 32 • Analogous formulas are 
obtained for other frequencies. The average dipole moment per unit volume* (polarization vector) at Q32 

has the form 

(28) 

(The remaining terms give a negligibly small contribution at the frequency fl 32). On the other hand, 
the complex dielectric constant t is determined through the complex polarization coefficient K : 

e = I + 4mc, 

where K is determined from the relation 

P 32 = Re (xF23 exp {- i!J.32t} ). 

Using Eqs. (22) and (28)- (30) we get 

I 4 2 (-) / F I 4 I !1-•s J2 e = + 'It• Ps2 !12s 2s = + 'lt-1L-

The absorption coefficient Ol is determined from (see, for example, Ref. 11) 

[ D _ Dn••Y,. (1 + 3y,.)- DonYto (1 + Yts)] -r-1 
028 1 + lYt• + 2Yts + 3YtsYn 2 

* We shall assume henceforth that the p 's are normalized to unit volume. 

tTo be specific, we shall talk of a dielectric constant, even though all the formulas obtained are 
equally applicable to the magnetic permeability. 

(29) 

(30) 

(31) 

(32) 
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We see immediately from (32) that by proper choice of y 13 and y12 (or one of these), i.e., by choice of 
the fields F 13 and F 12 , it is possible to obtain negative absorption at the frequency n32 • In this case this 
system can operate as an oscillator or amplifier. It is necessary for this purpose that the following condi
tion be satisfied. 

Let us consider the case when y12 = 0, i.e., the field F 12 = 0, Then Eqs. (31) -(33) become 

41tna2 [ !L28 [2 ___ ....:..[D_o.:...~a_-_D_:.o_laY_,_a -=-' (_1_+_2--:y:-'a_))_'l'..:..;-_' __ 
«= -c- --11- 2 2 l ' 

2 -2 f~sl !La2l '1'1'1'2 2 + 3y,a 
((1.)82- ns2) + '1'2 + ~1t2 1 + 2y,a 

The last inequality can be satisfied if 
Do2s- Dols /2 < 0. 

Let us note that ( 33a) changes into ( 33b) if 

Taking it into account that D023 = p022 - p033 and D013 = p011 - Po33, condition (33b) can be written 

Po22 < 1/2 (Pon + Poss)· 

(33) 

(31a) 

(32a) 

(33a) 

(33b) 

(34) 

(35) 

It is now easy to understand the presence of negative absorption at a frequency n32 • In fact, let the 
equilibrium level populations p022, p011 , and p033 satisfy the condition (35). * 

A sufficiently strong field F 13 can then saturate the populations of levels 1 and 3, i.e., in the presence 
of field F 13 the populations of levels 1 and 3 become equal to ""' ( i) ( p011 + p033 ). But since condition (3 5) 
is satisfied, this means that at the upper level 3 the population is greater than at the lower level 2. In 
that case the field F 23 induces emission at a frequency n32 R: w32 instead of absorption. This is pre
cisely negative absorption. 

The square brackets in expressions (31), (32) and (31a), (32a) play the role of the differences in the 
populations of levels 2 and 3 in the presence of the field. These differences are negative under conditions 
(33) and (33a). 

Let us note that with the aid of formula (31) it is possible to obtain directly the amplitude and fre
quency of the steady-state oscillations of the generator, as well as the gain of the amplifier. For this 
purpose it is necessary to substitute the real and imaginary parts of (31) into the corresponding formulas 
of the theory of the molecular generator and amplifier (see, for example, Ref. 1). 

The author is indebted to Professor V. L. Ginzburg for reviewing the article in manuscript form and 
for comments. 

1N. G. Basov and A.M. Prokhorov, J. Exptl. Theoret. Phys. (U.S.S.R.) 27, 431 (1954); 30, 560 (1956), 
Soviet Phys. JETP 3, 426 (1956). 

2 Gordon, Zeiger, and Townes, Phys. Rev. 95, 282 (1954); J.P. Gordon, Phys. Rev. 99, 1253 (1955). 
3 Shimoda, Wang, and Townes, Phys. Rev. 102, 1308 (1956). 
4 V. S. Troitskii, Pa;a;HoTexHHKa H aJieKTpOHHKa (Radio Engineering and Electronics) 2 (1956). 
5 V. M. Fain. J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 945 (1957), Soviet Phys. JETP 6, 426 (19581. 
6 V. M. Fain, Usp. Fiz, Nauk (in press). 
TN. Bloembergen, Phys. Rev. 104, 324 (1956). 
8 M. Strandberg, Proc. IRE 45, 92 (1957). 
9 Scovil, Feher, and Seidel, Phys, Rev. 105, 760 (1957), 
10 J.P. Wittke, Proc, m.E, 45, 291 (1957). 

* If the inverse condition p022 > ( i) (p011 + p033) is satisfied, negative absorption is possible at the 
frequency w21 • 



EFFECT IN A SYSTEM WITH THREE ENERGY LEVELS 

11 R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948). 
12 A. Overhauser, Phys. Rev. 8.9, 689 (1953). 

Translated by J. G. Adashko 
262 

995 

SOVIET PHYSICS JETP VOLUME 6 (33), NUMBER 5 MAY, 1958 

ON THE FLUCTUATIONS OF NUCLEAR MATTER 

D. I. BLOKHINTSE V 

Joint Institute for Nuclear Research 

Submitted to JETP editor July 1, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1295-1299 (November, 1957) 

It is shown that the production of energetic nuclear fragments in collisions with fast nucleons 
can be interpreted in terms of collisions of the incoming nucleon with the density fluctuations 
of the nuclear matter. 

1. INTRODUCTION 

THE motion of nucleons in nuclei can result in short-lived tight nucleon clusters, in other words, in 
density fluctuations of nuclear matter. Since such clusters are relatively far removed from the other 
nucleons of the nucleus, they become atomic nuclei of lower mass in a state of fluctuating compression. 

In their study of the scattering of 675-Mev protons by light nuclei, Meshcheriakov and coworkers1•2 

observed recently certain effects which confirm the existence of such fluctuations, at least for the sim
plest nucleon-pair fluctuations, which lead to the formation of a compressed deuteron. 

We recall in this connection reports in earlier works3•4 that high-energy nucleons can split nuclei into 
"supra-barrier" fragments, i.e., fragments with an energy much larger than their binding energy and the 
energy of the Coulomb barrier. However, there was a lack of quantitative experimental data on which to 
base the theoretical analysis. 

Some authors related this curious process, without foundation, to hypothetical long-range nuclear for
ces. Others tried to connect it with nuclear many-body forces. 

The experimental data on the emission of high-energy deuterons from light nuclei give support to the 
idea that "supra-barrier" fragments are produced also by direct collision of an incoming nucleon with 
a tight nucleon cluster that results from density fluctuations of the nuclear matter. We offer in the fol
lowing a quantitative argument in favor of the production of fast deuterons and other "supra-barrier" 
fragments by such fluctuations. 

Concerning the nuclear many-body forces, it should be noted that, according to existing estimates, 5 

there is no reason to believe that they are considerably stronger than the two-body forces. At the instant 
of dense clustering both paired and collective interactions may take place. However, at present there 
exists no experimental information which would allow an explanation of this interaction, or in particular 
allow a determination of the relative contributions of the paired and the collective interactions. 

2. INTERACTION OF DEUTERONS WITH FAST PROTONS 

It was shown experimentally1•2 that scattering of 675-Mev protons by deuterium produces, in addition to 
scattered nucleons, a small number of undestroyed deuterons of high energy (up to 660 Mev). This shows 
that in such collisions the nucleon imparts an appreciable fraction of its momentum to the deuteron as 
a whole. 
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