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The anomalous skin effect is considered, using Landau's theory of a Fermi liquid, as ex­
tended by the author1 to the case of a degenerate electron fluid. We show that the informa­
tion we get about the Fermi surface by measuring the surface impedance does not depend on 
whether we consider the conduction electrons to be a gas or to be a degenerate fluid. We 
discuss the problem of how to define the parameters for an isotropic model of a metal. 

I. It is well known that in the region of the anomalous skin effect2 it is impossible to use such macro­
scopic characteristics of the metal as conductivity, and that it becomes necessary to use some model for 
the behavior of the electron conductivity in a metal. It is therefore usual in the theory of the anomalous 
skin effect3 to use the model of an electron gas, although in actual fact the interaction between the conduc­
tion electrons in a metal is relatively strong. In this connection one should consider this phenomenon by 
starting from the theory of Fermi-liquids.4 

If we confine our interest to the case of weak fields, we may assume that the electron distribution dif­
fers only slightly from its equilibrium value, 

where Eo (p) is the electron energy in the equilibrium state. We find then from Eq. (14) of Ref. 1 (see also 
Ref. 4) that 

~ +v ~- iJfo \ dp' iJf,(p', r)<D(p p')+eE iJfo =-_.!_f 
at 0 or iJp J iJr ' iJp " 1 ' 

where v0 "' 8E0/a p, T is the relaxation time and <I> (p, p') describes the correlation of the particles. 
To develop a theory of the anomalous skin effect it is necessary to solve Eq. (1) combined with the 

Maxwell equations. In that case the current density is, according to Landau, 

(1) 

j=e~ :; fdp=e~(~~ f1 + ~~ fo)dp=e~dp{vofl- ~; ~dp'<D(p, p')ft(p')}. (2) 

2. Let the metal occupy the half-space z 2::: 0. The function f1 can then be written as follows 

ft (p, z, t) = e ~; ljl (n, z) ei"'t (n = Vo I Vo)· (3) 

The transport equation (1) and the equation for the electric field can now be written 

1e~f 1J1 (n, z) + kn :z {~J~ (n, z) + ~ dS' F (n, n') ljl (n', z)} + nE = 0, (4) 

E' + e0 (; Y E = - c~~~:~)3 ~ dSn {~J~(n, z). + ~ dS.' F (n, n') ljl (n', z)}, (5) 

where k is a unit vector in the direction of the z-axis, dS is an element of the Fermi surface, Elt' the 
dielectric constant, excluding the contribution from the conduction electrons, leff = VoT /(1 + iwT), and 
finally 

F (n, n') = [2 I (27t1i)3 ] <D (p, p') I V 0 (n) (6) 

Solving (4) and (5), we can find an experimentally measured quantity, namely the surface impedance of 
the metal. 
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3. In the region of the normal skin effect, where the inhomogeneity of the electron distribution in space 
is not important, the solution of Eq. (4) is of the form lf! = - l. eff(n·E) . This leads to the following ex­
pression for the current, 

j" = 2e2 (27tlif3 ~ dSleff {nan~ + ~ dS' F (n', n) n~ n~} £~ = aa~E~. (7) 

Using expression (7) we ean write down an expression for the conductivity tensor or, more generally, the 
complex dielectric constant (E' =Eo -i41Ta/w). 

Assuming the metal to be isotropic, we can write Eq. (7) in the following form, 

(8) 

In the region of low frequencies (w T « 1) the complex dielectric constant is determined by static con­
ductivity, 

(9) 

where l. = v0T{ 1 + p~ f dH cos x F( cos X)} plays the role of the electron mean free path. On the other hand, 
in the region of high frequencies (wT » 1), the dielectric constant has the form 

(10) 

where 

87tp~v0m { \ } 
N = 3 (2d)s 1 + p~ ~ dD. cos xF (cos x) . (11) 

4. To solve the transport equation (4) in the region of the anomalous skin effect, where the spatial in­
homogeneity plays an essential role, it is necessary to introduce a boundary condition at the metal sur­
face.5 We introduce such a condition for the function 

'Y (n, z)= ~ (n, z) + ~ dS' F (n, n') ~ (n', z), (12) 

which determines the particle current as can be seen from Eq. ( 5). We assume that on the metal surface 

(13) 

We can then easily obtain from Eq. (4) an integral equation for l{J(n, z), using Eq. (13) and taking into 
account the fact that as z - oo 'IJ1 (n, z) tends to zero. In the limit of a sharply expressed anomalous skin 
effect (l. eff - oo), this equation simplifies considerably and has the form 

'Y(n, z) -~(n, z) + ~ dS' F (n, n'H (n', z) = ~0 (n, z). (14) 

Here 
z ~ 

kn :> 0: ~0 (n, z) = -~ dz' exp (- l:ff jz';;: z I) nEn~') - q ~ dz' exp (- 1:£~: ) nEn~'), 
e e 

(15) 

~ 

kn<O: ~0 (n,z)=~dz'exp(- 1 :ff jz'~zj)nEn~'), (16) 
z 

where we have neglected the z-component of the electrical field, since it gives a negligibly small con­
tribution. The function lf!o(n, z) is the corresponding solution of the usual theory of the anomalous skin 
effect.6 

In our considerations the function 'IJ1 plays the same role in determining the current as the function l{J 

in the usual theory. We can therefore confirm, according to (15), that in the limit, as l.eff- 00 , the ex­
pression which we obtain for the surface impedance coincides with the corresponding expression of the 
usual theory. 

We must note that this result is obtained when we satisfy the boundary condition ( 13). This boundary con­
dition for the function 'IJ1 differs, generally speaking, from the usual boundary condition3•5•6 imposed upon the 
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function 1/J. One can show, however, that if condition (13) is imposed upon the function 1/J(n, z), the result 
just obtained is not changed. 

The anomalous skin effect is an important means of studying the form of the Fermi surface. In that 
respect one can summarize the situation and say that if we consider instead of an electron gas a degener­
ate electron fluid, no complications arise in the analysis of the Fermi surface. Such an analysis can also 
be conducted using the methods of Kaganov and Azbel'. 

5. We consider now some problems connected with the application of the above theory to an analysis of 
experimental results in the case where we can use an isotropic model of the metal to discuss the experi­
ments (see, for instance, Ref. 7). The expression for the surface impedance in the case of a sharply ex­
pressed anomalous skin effect (£ eff - oo) is of the form3 

z"" = <"V3rr<U2t/c4 cr0 ) < 1 + Jf3i), (17) 

where t is the mean free path of the electrons and where 

crcfl = 2fa 47te2p~ (27thf3. (18) 

Using the isotropic model, we can try to determine from the experimental data the quantity 

A- p~ ~ dU cos xF (cos x). ( 19) 

by which (9) to (11) differ from the corresponding formulae of the usual theory. We should also use ex­
perimental data on the electronic heat capacity, on the dielectric constant (in the region of infrared radi­
ation), and on a0/t as determined from the anomalous skin effect. The measurement of the electronic 
heat capacity ( ce = y T) gives us the quantity4 

21t2k• \ dS Z1t2 47tp~ 
1 = 3 (27t1i)3 .) v(n) = -3- k2 (27t1i)3 v0 ' (20) 

where k is Boltzmann's constant. The determination of the dielectric constant in the infrared region of 
the spectrum, at frequencies much larger than the collision frequencies of the electrons but much smaller 
than the frequencies of the natural absorption, enables us to find the quantity N determined by equation (11). 

The state of the electrons in the isotropic model of a metal is characterized by three parameters, a 
natural choice for which is the velocity v0 of the electrons at the Fermi surface, their momentum p0, 

and the quantity A [see Eq. (19) }. These quantities can all be determined with the above mentioned meas­
urements, according to the following equations, 

1 _ 1t2k2 (<>0//) • 2 _ 3(27t1i)3 <>0 • _ e' yN 
to - ezy ' Po - 81te"l ' 1 + A - 1t2k2m (<>o/1) · (21) 

In the table we give the values of N, y and a0/t for several metals1•8•9 and the value of the parame­
ter A determined from Eq. (21); this parameter characterizes the difference between a Fermi fluid and 
a gas. As can be seen from the table, this parameter is not small compared to unity. If we consider the 
use of an isotropic model for a metal as legitimate, this fact can be considered to indicate that the conduc­

y·IO-• (erg• (a,/l) w-u 

cm" 1 -deg. "2 ) 
N·IO-" (Ref. 8) 

Cu 1.02 3.3 13.9±0.4 
Ag 0,65 5.2 7 .8±0.4 
Au "-'0.65 5.1 7.6±0.4 
Sn 1.03 <3.5 8.6±0. 7 
Al 1.46 5.4 18.4+1.t. 

A accord-1 Vo·10-• 

ing to(21)1 from(21) 

-0.46 1.11 
+0.9 1.04 
+0.8 ~1.0 

<+0.5 0.68 
+0.28 0.31 

tion electrons are considerably different from a gas. 
We note that among the different equations given in 
Ref. 7 for the velocity v0 of the electrons at the 
Fermi surface, assuming the metal to be isotropic, 
the correct value under those assumptions agrees 
with our determination of v0 according to Eq. (21). 
The corresponding value of v0 is given in the table. 

6. In this way we can estimate effects caused by 
the difference between an electron fluid and a gas, if 

we assume that the isotropic model of a metal is justified. In those cases, however, where the Fermi 
surface differs appreciably from a sphere, it is considerably more complicated to obtain a similar esti­
mate. At any rate, we can say that, in order to determine the role of the correlation between particles, it 
is necessary to study the dielectric permeability tensor in the infrared range of the spectrum, 

(22) 

One can now hope that one can also elucidate the role of the function F(n, n') in the case of an anisotropic 
metal, by using also data on the electronic heat capacity and on the form of the Fermi surface, obtained 
in particular from the anomalous skin effect. 
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The role of the correlation between particles can also be elucidated by studying phenomena in a mag­
netic field. The transport equation is in that case 

a { a e a \ { (" , } a~~+ va;:+c-[vxHlapr ~+ jdS'F(n,n')~(n',r') +evE=/(~). (23) 

This equation is practically the quasi-classical SchrBdinger equation for the electron state, which differs 
only slightly from its equilibrium state. In particular, we can thus determine the quasi-classical spec­
trum of the electronic energy levels in a magnetic field from the equation 

iw·~ + f [vxH]: P {~ + ~ dS' F (n, n') ~ (n')} = 0. (24) 

The presence of the function F in Eq. (24) considerably affects the determination of the eigenfrequencies 
of the electrons. In the case of the isotropic model the solution of Eq. (24) can easily be found by expand­
ing eiktp P~(cos ()) in spherical harmonics. The eigenfrequencies are then w~ = k(eHv0/cp0) { 1 
+ 41TAn/ ( 2n + 1)}, where An is the expansion coefficient of the function F (cos x) in Legendre polyno­
mials. The fact that the spectrum of the electronic energy levels in a magnetic field depends strongly on 
the function F enables us to state that, for instance, the de Haas-Van Alphen effect can be used to deter­
mine the shape of this function. On the other hand, the determination of the Fermi surface is apparently 
very difficult. This is also true for the case of diamagnetic resonance (bismuth). The change in the eigen­
frequencies of the electrons in a constant magnetic field, caused by the correlation between particles, can 
also influence considerably the interpretation of resonance frequencies in the case of cyclotron resonance, 
which is observed in the region of the anomalous skin effect. We note finally that in the case of galvano­
magnetic phenomena the difference between Eq. (23) and the usual one consists in fact only in a redefini­
tion of the collision integral. The results of the usual theory of galvanomagnetic and magnetothermal 
phenomena remain thus practically the same. 

In conclusion I wish to express my deep gratitude to V. L. Ginzburg for his interest in this paper and 
for discussing its results" and also to L. D. Landau for useful suggestions. 
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