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Dispersion relations are discussed in the framework of nonrelativistic theory. It is shown 
that the energies, parities, and certain spectral coefficients characterizing the bound states 
of the system can be determined on the basis of scattering data. Some characteristics of 
the deuteron are determined by using the n -p scattering data. 

THE dispersion relations for the scattering amplitude are usually formulated on the basis of relativistic 
field theory. This leads to a number of difficulties, which with few exceptions preclude the obtaining of 
applicable results. We shall discuss dispersion relations in the framework of nonrelativistic theory. 

In order for dispersion relations to exist, it is necessary that the scattering amplitude be an analytic 
function of the complex energy and be bounded for E - co. However, in the nonrelativistic case, the 
scattering amplitude behaves like e-2ikR for k - co, where k is the wave number, and R0 is a radius 
beyond which the interaction vanishes. Dispersion relations can be written only for the function F(k) 

f (k, e, cp) e2ikR, R > Ro. Let us denote 

F 0 (k) =Ref (k, 6, 'f) cos 2kR -- Im f (k, 6, rp) sin 2kR, F 1 (k) =Ref (k, 6, rp) sin 2kR + Im f (k, 6, rp) cos 2kR. 

From the Cauchy theorem we then have: 
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Here kx are the poles of the scattering amplitude that lie on the upper half of the imaginary axis, and 
vx = -Res f, the residues at the points E =Ex. The following integral relations also hold 

00 + ~ kdkF dk) =- ~ Vt-e-z!l<AIR. 

o A 

The coefficient vx is connected with the asymptotic part of the wave function of the stationary state. 
To show this we write the (elastic) scattering equation in the form 

T = V + V(E -HfiV, Im E>O. (1) 

Here T is the scattering operator introduced by Lippman and Sr.hwinger.1 We now investigate the scat
tering of a particle by a nucleus in state A. Let 41a be a normalized wave function for channel a 

We designate by 'Ira the solution of the scattering problem 

*The first conjecture that the bound states can be found from scattering data by analytic continuation 
of the S matrix is due to Heisenberg 

975 



976 V.I. SERDOBOL'SKII 

The scattering amplitude for the transition from state a into state a' is given by 

fa-a'(k, fJ, ?)= -2.-:2 (<l>a'> T<l>a)· (2) 

The integral equation (1) allows an analytical continuation into the complex E plane. From (1) and (2) one 
can easily obtain the residue of the scattering amplitude 

[Resfa-a']£1- = -2o.2 2j (<l>a'• V'P'J-)('1\, V<l>a)· 
1- E E), 

Here the summation is over all quantum numbers A. characterizing the state with energy EA.. The func
tions ~a' and ~a are the appropriate analytical continuations of the respective plane waves. At large 
r, where the interaction vanishes and where the angular factor becomes insignificant, the wave function 
has the form exp (-lkA I r) gA./r. The factor gA depends on angular, spin, and other variables. For the 
scalar products we obtain 

The number IA, which equals :._ 1, ~haracterizes the parity of the state A.. In the particular case of 
elastic forward scattering a = a', k = k' and 

VA = rrh :z gi. 
AE E"A 

This shows that the sign of vA determines the parity of the bound state A. The absolute value of "A. 
is proportional to the virtual decay, i.e., to the probability that the bound particles of the system separate 
to a distance larger than the range of the forces. 

We now apply the dispersion relations to the concrete problem of neutron-proton scattering. We utilize 
the fact that the n - p interaction can be well represented by the potential function V = V (r) 6 (r- r'). 
One can show (we shall not give the proof here) that the forward-scattering amplitude for this potential, as 
a function of the comple:1.: energy, is bounded for E - oo and approaches the limit 

f (oc) =- };t ~ V (r)dr. 

Cauchy's theorem can be applied to the difference f(k) -f(oo), where f(k) is the forward scattering 
amplitude. Let ft (k) and fs (k) be the triplet and singlet scattering amplitudes respectively. Let further 

fo (k) = Re [+ ft (k) + { fs (k)], 

and let the cross section be a = 3/4 at+ 1/4 as· The dispersion relations then become 
00 

k 2 \ a (k') dk' 3 k2v1 

f 0 (k)- f 0 (0) = 2r." J -k'"- k2 + 4 "i (k2 +hi) . 
0 

Here v1 is the spectral coefficient and k1 the reciprocal of the deuteron radius: k 1 = 1/Rn; Rn 
= 4.314 x 10-13 em. The n -p scattering cross section is known with good accuracy up to high energies. 
We performed the integration to an upper limit corresponding to 70 Mev. The contribution from the dis
carded part of the integral does not exceed a fraction of one per cent. The computation was performed for 
values of k corresponding to 1, 2, and 5 Mev in the laboratory system. The coefficient v1 was obtained 
from the dispersion relations and found to be roughly the same for all energies, (7 .5 ± 0.4) x 10 1~ cm-1• 

The positive sign of the spectral coefficient indicates the even parity of the wave function of the deu
teron. The spectral coefficient can be obtained independently from a model of the deuteron. For example, 
in the approximation of effective-range theory one obtains the expression v1 = 2/(Rn- rot) which gives 
a value 7. 7 x 1012 cm-1• The discrepancy between this value and the value obtained from the dispersion 
relations is small and well within the limits of possible errors. 

In conclusion the author wishes to thank Professor A. S. Davidov for his interest in this work. 
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