
SOVIET PHYSICS JETP VOLUME 6 (33), NUMBER 5 MAY, 1958 

NONLINEAR EFFECTS IN METALS AT LOW TEMPERATURES 

M. I. KAGANOV and V. G. PESCHANSKII 

Institute for Technical Physics, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor May 20, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1261-1263 (November, 1957) 

We investigate the possibility of observing deviations from Ohm's law in metals at low tem
peratures. 

IN order to observe deviations from Ohm's law in all metals (apart from bismuth1) it is necessary to 
have huge current densities of the order of 108 to 109 amp/cm2• This is connected with the fact that the 
energy gained by an electron between collisions is small. Since on decreasing the temperature the mean 
free path increases considerably, we can expect that the observation of nonlinear effects should, as a 
matter of course, be done at low temperatures. The present article is thus devoted to an analysis of this 
possibility. 

1. At large current densities it is not possible to assume that the symmetrical part of the electron 
distribution function agrees with the Fermi equilibrium function. However, one can successfully approxi
mate the symmetric part of the electron distribution function by the Fermi function, be it at a tempera
ture different from the lattice temperature,2•4 in those circumstances where the time between collisions 
between the electrons, which is given by the equation 

1 ( ~ )2 
'tee= qenu \~ ' 

(where qe is the cross section for electron collisions ( ~ ~ 10-15 cm2 ), n is the number of electrons 
per unit volume, t the Fermi energy, v the velocity at the Fermi level, and e the temperature of the 
electron gas2•3 ), is considerably less than the time trel necessary to. transfer energy from the electrons 
to the lattice. We calculate trel using the value of the heat transfer U found in Ref. 4. 

(1) 

(here and henceforth we omit numerical factors of the order of unity; see Ref. 2 ). In Eq. (1) m is the 
electron mass, s the velocity of sound, T the lattice temperature, T0 the Debye temperature, and To 

the relaxation time of the' electrons at T = T 0 (putting e = T ) . 
The heat balance equations are of the form 

Ce ae I at= - (ms 2 n I 'toT~) (f-)5- P), cphaT I at = (ms2 n I 'toT~) (85 - P), (2) 

where Ce ~ ne/t is the electronic heat capacity and Cph ~ n(T/T0 ) 3 the phonon heat capacity (we con
sider temperatures well below T 0 ). 

Taking into account that e ::::: T we have from equations (2)'1' 

{ 
'1:0 T~/ ms2 T (T ~ T 0 VT0 / :), 

trel:=:::: __ 
'to Tgl ms2 ~ra (T ~To VTof:). 

(3) 

Comparing these expressions with T ee• we can satisfy ourselves that the time to produce the elec
tronic Fermi distribution is less than trel down to temperatures of the order of 0.1 to 1 °K (depending 
on the metal). This enables us to use as the electronic distribution function tlle quasi-equilibrium func
tion f0 ( e) ( e -F T) down to sufficiently low temperatures. 

2. In calculating the resistance of a metal one usually assumes that e = T. This is natural if one is 
not interested in nonlinear effects. If e -F T the conductivity depends both on the phonon (lattice) tern-

*In Ref. 4 we gave only the second equation of (3) and the region of applicability of this equation was 
not indicated. 
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perature and on the electron temperature. One can easily show that 

CJ = (ne2" (8, T)jm) {I - ;;28 2jl2C2}, 

where 

In equation (5) Timp• T ep and Tee are the relaxation times referring respectively to collisions with 
impurities, with phonons, and with electrons. 

(4) 

(5) 

The quantity Timp does not depend at all on the temperature, and Tee depends only on the electron 
temperature (see Sec. 1 ). The evaluation of the temperature dependence of Tep proceeds in the usual 
way (see, for instance, Ref. 5) with only one difference, namely that we assume the electron and phonon 
temperatures to be different ( e I T ). The result is 

1 1 { 4 (85 -TO)} 
Tep (8, T) = Tep (T) l + 5T5 . 

Here T e ( T) is the value of this relaxation time in the isothermal model. 
To defermine the electron temperature it is natural to use the heat balance equation 

pj2 = u, 

where p is the total resistivity which is practically equal to the impurity resistivity, p R~ m/ne2Timp· 
From Eqs. (7) and (1) it follows that 

or 

Using expressions (4), (6), and (9), and the value of Tee (e) we find the way the resistance depends on 
the current density (we assume that D.T « T), 

(6) 

(7). 

(8) 

(9) 

6.p/p = (jfnes)2 {I + lep (T)f2lee (T)}. (10) 

The J2. 's in this equation are connected to the T through the relation J2. = VT. We see from this equation 
that nonlinear effects increase with the ratio Jl.ep /JI.ee, which in turn increases as T-3 with decreasing 
temperature. 

Our considerations are no longer correct at very low temperatures since the condition D. T « T is no 
longer satisfied. We shall consider another limiting case, namely, T = 0. We have then from Eq. (8) 

8 = T 0 Crimp/'t0)'i• (jfnes)'l•, 

and thus for T = 0 

t.ojp = (jfnes) 2 + ('t''•'t:;. /'t ) (jfnes)''· (11) 
~ ee 1mp oee 

(where Toee = Tee ( T 0)) where the first term corresponds to the creation of phonons and the second one 
to electron-electron collisions.* 

We notice that Eq. (11) is, strictly speaking, only justified for those current densities which produce 
an increase of the electron temperature to 0.1 to 1.0°K (see Sec. 1). If the current density is less, it is 
impossible to speak about two temperatures, and Eq. (11) must be assumed to give a purely qualitative 
desc.ription. 

Finally we note that we must apparently look for nonlinear effects at low temperatures in those metals, 
for which a large part of the resistivity is due to electron-electron interactions. 

If Jl.ep /JI.ee ,..., 103 to 104, we can expect an increase in the resistivity of one per cent for currents of the 
order of 105 to 106 amp/cm2• 

Apart from the paper by Ginzburg and Shabanskii, the papers by Shabanskii6•7•8 are also devoted to a 
theoretical discussion of nonlinear effects in metals. In those papers the author has tried to extend the 
Fokker-Planck method to the case of a temperature well below the Debye temperature. It seems to us, 

*If we assume that the metal does not contain any impurities, we have at T = 0, 
P = Pee• PeefPoee = ('to/T0ee )'1• (jjnes)' 1•. 
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however, that one can make serious objections to an application of this method to these cases. The trouble 
is that the terms which are neglected in the expansion of the collision integral for T « T 0 are of the 
same order of magnitude as the terms which are left in [see Ref. 6, Eq. (4) ]. 

The inapplicability of the Fokker-Planck method to the problem under consideration can clearly be seen 
from the fact that the directly calculated coefficients A1 and A2 (see Ref. 6) do not agree with the 
values obtained by the author from the condition S ( f 0 ) = 0. Apart from that, the author arrives in Ref. 7 
at the paradoxical conclusion that the resistivity of a metal must go to infinity as T- 0. 

We shall not compare here all our results with the analogous equations of Refs. 6, 7, 8, although sev
eral of them agree in order of magnitude with the equations of those papers, in the case of small tempera
ture differences ( ~ T << T). 

The authors would like to use this opportunity to thank I. M. Lifshitz and E. S. Borovik for discussions 
of the problem considered in this paper. 
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The scattering matrix S for the reaction a + b - a' + b' is expressed in terms of a finite 
number of spin operators Qi, each invariant under rotations and reflections. A method for 
constructing the Qi is given, and their number is determined for a reaction with given initial 
and final spins. The restrictions placed upon the form and number of the Qi by the condition 
that the scattering matrix be invariant under time reversal are considered. Examples are 
given in which S is represented by the Qi for several reactions. 

THE scattering matrix S (k', k) for the reaction a+ b- a' + b' is an operator in the space defined by 
the spins of the incident and scattered particles, and is a function of their relative momenta k, k'. Since 
S is invariant under rotation, it can be written in the form 

S(k', k) = ~A;(k'k)Qi (k', k, T), (1) 

where the Qi ( k', k, T) are invariant operators that depend on the vectors k', k and on the matrices T 


