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The energy of the ground state and the effective mass of the excitations are found for a non
ideal Fermi gas with short-range forces, the radii of action of which are small in compari
son with the average wavelength. 

YANG and Huang1 and Yang and Lee2* have recently investigated the properties of non-ideal Bose and 
Fermi gases consisting of particles whose dimensions are small in comparison with their average wave
length. The study of such a model is of considerable interest. The method developed by Yang, et al., 
however, is extremely cumbersome. 

In the present work another method will be described which allows the thermodynamic quantities in the 
model of Yang, et al., to be found reasonably simply for the case of Fermi statistics. The idea for this 
method is due to Landau. 

The model, called a hard-sphere model in the work of Yang et al., has in reality a more general char
acter. It describes a system of particles with arbitrary short-range forces whose radii of action are 
short compared to the av,erage wavelength. 

We first find an expression for the energy of the system correct to terms of order ( a/:>..) 2 (where a 
is the radius and A. the wavelength). It would be possible in principle to determine the terms of order 
( a/A.) 3 in an analogous manner; terms of higher order, however, are in principle impossible to find by 
me~s of the method presented below, since beginning with terms of the fourth order it is necessary to 
take into account the contribution of multiple collisions ( cf. Ref. 1). 

We make use of perturbation theory as applied to the interaction energy of the particles, which we 
write (taking the volume of the gas as unity, for simplicity) 

V rc:2U ~ d;t;,a;t,a,,a,,, 
n1n:mtm1 

n1<na 

( 1) 

where at and ai are the creation and annihilation operators for the particle. The summation is per
formed with conservation of the total momentum taken into account, with the projection of the spin of the 
state m1 equal to the projection of the spin of the state n1, and similarly for m2 and n2• The placing 
of U ahead of the summation sign reflects the fact that the interaction is identical for all pairs of par
ticles, while the scattering amplitude is independent of the angle. The magnitude of U is in the first ap
proximation related to thiB amplitude by the expression 

(2) 

(a being the s-scattering amplitude). 
The first-order contribution to the energy is equal to the diagonal matrix element of V: 

£~1> = 2U ~ N ,,N ,,Q,,n,, ( 3) 
n1<ns 

where the Ni are the occupation numbers. 
The factor Qik in Eq. ( 3) takes into account the circumstance that Fermi particles, having an angle

independent scattering amplitude, do not interact in the case of parallel spins. Thus we shall assume 
that 

*We take this opportunity to express our gratitude to Professors Yang, Huang, and Lee for sending us 
their manuscripts prior to publication. 
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( 4) 

( <Ti being the spin operator for the i -th particle). 
Substituting Eqs. ( 2) and ( 4) into ( 3), we obtain 

E<1> = (27tatr_2fm)N212. (5) 

To find the second-order correction we use the perturbation-theory expression 

E~> = ~ IVnm /2 I (En- Em)· (6) 
m+n 

Substituting Eq. ( 1) into this formula, we obtain the following sum: 

( 7') 

where the Ni are the equilibrium occupation numbers and the Ei are the particle energies. 
Since our objective is an expansion of the energy in powers of a, we must recall that the relation ( 2) 

between U and the scattering amplitude is not exact, but correct only to terms of the first order. Taking 
second-order terms into account we obtain in place of relation ( 2) the following: 

2U +4U2 ~ Qn,n, I (En,+ En,- Em,- Em,) = 87tati.2 I m. ( 2') 
m1mz 

If from this we express U in terms of a and substitute the result into Eq. ( 3), then the expression for 
E(1) will contain terms proportional to a2, which are naturally to be referred to the second-order cor
rection. Taking this into account, we obtain the following value for the second approximation to the en
ergy: 

E<z> = 2U2 ~ {Nn,Nn, (1- NmJ (1-Nm,) Qn,n,I(E"• + En,-Em, --Em,)- Nn,Nn,Qn,n,I(En, +En,- Em,- Em,)}.( 7) 
n1n:m1mz 

In view of the fact that the expression in brackets is symmetrical in n1 and n2, we replace the limit 
n1 > n2 by the factor !-. 

The reason for the operation we have just performed is that the expansion in powers of U does not 
actually take place. The presence of the constant U would simply have led to an infinite value for the 
energy, as can be seen directly from Eq. ( 7' ). In the present case the essential circumstance is that the 
scattering amplitude a has a finite, and moreover a small, value, which makes possible the expansion 
in terms of this quantity. 

In the first part of Eq. ( 7) the term containing the product of four Ni 's is equal to zero, since the de
nominator is antisymmetric relative to the interchange n1n2 - m1m2, while the numerator is symmetri
cal and the total range of summation is the same. The remaining two terms containing the products of 
three Ni's are identical. Thus we obtain, finally 

(8) 

This is the fundamental expression for the energy, which is correct so long as the assumption (a/A. « 1) 
is fulfilled. 

Our goal is to obtain the characteristics of a degenerate Fermi gas. From Eq. ( 8) we find for the en
ergy of the ground state 

( 9) 

where Po is the limiting momentum, equal to 1i(371'2N)113• 

In accordance with the work of Landau on the theory of a Fermi liquid, 3 the excitation energy is deter
mined by the relation 

( 10) 
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Taking the variation of Eqs. ( 3) and ( 8) with respect to Ni gives 

6 (p) = J?.:_ + ~ N + ~ I dp1 \ dp2 (' dp3 [ a (Pl + P2 - p- Ps) - 2 a (PJ + p- P2 - Ps) ] . 
2m 2 (2rt1l) ) .\ ~ (p• + p2 _ p2 _ p2);2m (p• + p2 _ p2 _ p2)/2m 

\p,\,<p, IPoi<Po 3 1 2 1 2 3 

( 11) 

Thus the problem of caleulating the energy of the ground state and the effective mass of the excitations 
reduces to that of computing the integrals in ( 9) and ( 11). The integration is quite involved, due to the 
high multiplicity of the integrals and the inconvenience of the regions of integration (the computation of 
the integral in ( 9) will be carried out in the Appendix). It is possible, instead, to use a simpler method 
based on the relations obtained by Landau. If we introduce the function 

( 12) 

which depends upon the momenta and spins of the i-th and k-th particles, then, in accordance with Ref.-3, 

! = ~ • + 2 (f;li)" Sp"· cr' ~ f (p, cr; p' cr') COS 6dQ; ( 13) 

2 2 

C2 = :~. + 6~ ( ;;1tsp"· "' ~ f (p, cr; p'·, cr') ( 1 -cos B) dQ, ( 14) 

where c is the velocity of sound, m* is the effective mass, the two vectors p and p' in f are taken 
equal in absolute magnitude to p0, and e is the angle between these vectors. From Eq. ( 13) we find at 
once the effective mass, and from Eq. ( 14), after appropriate integration, the energy of the ground state. 

The problem thus reduces to that of determining the quantity f. Taking the variation of Eqs. ( 3) and 
( 8) with respect to Ni and then to Nk, we find 

f=2UQ""'- su•. \dp1\dp2[Qcrcr'a(p+p'-pl-P2) +__!__ 8(p+pl-p'-P•) +__!_ a(p'+Pl-P-P•)] (15) 
• (21tli) j .. ~ • (p•+ p'•- p2 __ p2)/2m 4 (p• + p2 _ p'•- p2)/2m 4 (p'• + p2- p•- p2);2m · 

1 p,J < p, 1 2 1 2 1 2 

In this calculation we shall at once set I pI = I p' I = p0• Integration over the second term in f is consid
erably simpler than the integrations in ( 9) and ( 11). We find as a result 

f = 21ta1i• l1 + 2 (.2_)'/, aN'f, ( 2 + cos 6 In 1 +sin (612) )] 
m 1t \ 2 sin (6,'2) 1 -sin (6;2) 

_ 8-;ta1i2 ( ) [ 1 + 2 (~- \''• N'f, ( 1 _ sin (6/2) I 1 +sin (6;2) )] 
m 01°2 1t j a 2 n 1- sin (6/2) · ( 16) 

A peculiarity of this expression deserves some attention. For angles e near 7T the function f has a 
logarithmic singularity 

( 17) 

It is clear that the approximation we have used is not\ applicable, strictly speaking, in this case. Analysis 
of the subsequent approximations shows that f does not go to infinity at the point e = 7T, but remains fi
nite; i.e., this singularity does not actually occur. t 

t Correction added in proof (September 15, 1957). The singularity in the function f (e) at e = 7T re
flects the singularity in the scattering amplitude for excitations colliding at the angle 7T. The correspond
ing expression, obtained by summing the principal terms in the perturbation theory, is proportional to 

[ ( 3 )'' 2 ]-1 1 + 2 ;t 'aN' I, In p~ , 

where E = p2 + p'2 - pij. 
For the case in which a is positive, this expression goes to 0 at p2 = p'2 = pij. 
If, however, a< 0 (this is possible for a Fermi system), the scattering amplitude has a pole near 

the Fermi boundary. This corresponds to the possibility of formation of associated pairs from excitations 
having opposite momenta, which has recently been noted by Cooper,5 and is evidently the principal reason 
for the occurrence of superconductivity in metals.6 
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Thus the expression found for f is invalid at angles near to 7T. In view, however, of the fact that the 
singularity is a logarithmic one, it is manifested only in the immediate vicinity of the singular point; and, 
since into the equations in which we are interested there enter only integrals of f with regular functions, 
the logarithmic singularity in the function f is not important. 

Substituting Eq. ( 16) into ( 13), we find for the value of the effective mass 

mjm* = 1-(8/ 15)(31;;)'1·(7ln2-l)a2N':,. ( 18) 

We note that if the value m* = 1.43 m, corresponding to liquid He3 ( cf. Ref. 4), is substituted here, the 
resulting value for a is found to 1.6 x 10-8 em, i.e., it is of the same order as the gas-kinetic diameter 
of the helium atom. Such a comparison has, of course, no strict significance. The model under consider
ation cannot describe liquid He3• This is already evident from the fact that the quantity ( m*- m)/m*, 
which should be a second-order quantity with respect to a in accordance with theory, is equal to % for 
the case of He3• 

Setting the formula for f into the expression for the velocity of sound, we obtain 

c2 = 'Tt_; N'1• n.• + 2 r.an.• N [1 + _£ ( ~)'/, aN'1• (11- 21n 2)]. 
3 /, m 2 m2 15 \ 1t 

( 19) 

From the value found for c2 it is not difficult to obtain the energy of the ground state for a Fermi liq
uid. For this we use the relation3 

c2 = (N I m) (Ofl I oN). (20) 

From this we obtain 

E = ~ fldN = £<o> + r.~• N 2 [I + :S ( ~ t aN'1• (II -· 2Jn 2)]. (21) 

Equation ( 21) agrees with the result of Lee and Yang.2 The same result may be obtained by direct inte
gration in Eq. ( 9); this is done in the Appendix. 

In conclusion, the authors express their deep gratitude to Academician L. D. Landau for his valued ad
vice and criticism of the results of this work, to V. Galitskii for his helpful discussions, and, finally, to 
L. Pogodina for her aid in the preparation of the manuscript for publication. 

APPENDIX 

For the computation of the integral in Eq. ( 9) it is convenient to introduce the new variables 

P =PI- P2• q = Pa - p., S = PI+ P2 = Pa + P4· 

In terms of these variables, E(2) takes on the form 

£<2>=- 4~~;1i)• ~ds~dp~dqp"~qz, 

where the region of integration for the vector s is 0 < Is I < 2Po 
and the range of values for p and q is shown in the figure. If we 
introduce the variables Xq = cos ( q, s) and Xp = cos ( p, s), E(2) 

becomes 

where z(x) satisfies the relation 

z2 + 2zsx + s2 = 4p~. 

From this, by means of a series of transformations and partial in
tegrations over dxp and dxq we find 
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2 7 1 I+s I-s l+s I-s 

£(2> = Zmrt~!~o ~ s2 ds [ ~ p2 dp ~ q2 dq + 4!2 ~ pdp ( 1 - p2 - s2) ~ q dq ( 1 - q2 - S2)] pz ~ qz • 

0 0 0 VI-=<' VI-s' 

Integrating further by parts over s and then carrying out the remaining integration, we obtain 

£(2> = (6 / 35) (3/7t)''• ( 11-2 ln 2) aN'1'E(l). 

Here we have expressed U in accordance with Eq. ( 2) and set Po = ti ( 3~N) t/a. The result thus obtained 
is identical with the second-order term in Eq. ( 21). 
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In an investigation of the reaction products induced by the bombardment of LiT by 15.6-Mev 
nitrogen ions, activities associated with F 18, Ne 19 , N18 , and 0 15 have been found; similarly, an 
activity associated with Al25 has been found in the bombardment of carbon. The production 
cross sections for the above-mentioned products have been determined. On the basis of an 
examination of the F 18-production cross sections in light elements bombarded by nitrogen ions 
and the a-particle binding energy in these same nuclei, it is proposed that the F 18 is formed 
by capture of an a-particle from the nucleus by the incoming N14 nucleus. 

NucLEAR reactions induced in light elements by N14 ~ons have been studied by a number of authors.1 - 8 

However, in all this work only nuclides with half-lives T greater than 1 min were investigated. The 
products resulting from the bombardment of LiT by N14 have not been studied at all. 

In the present work we have measured yields for nuclides with T > 1 sec produced by bombardment 
of LiT and C12 by N14 ions. The experiments were carried out with a beam of triply-charged, 15.6-Mev 
N14 ions from a cyclotron; the beam was focussed by two magnetic-quadrupole lenses. The target was 
placed at the end of a Faraday cylinder. The electric charge deposited by the beam was measured by 
electronic integration. In these experiments the ion-beam intensity was 4-7 x 1010 ions/sec. 

The lithium bombardment was carried out with a target consisting of a LiCllayer 701J. thick precipi
tated from an aquaeous solution enriched in LiT (the Li7 content was approximately 99 percent). The 


