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(y = 0,577, the Euler constant). In practice it is more convenient to use this formula in the following 
form 

~a= 39.7 (~ ZiPi) : log[2.28. w-13 (sT)3jmz~ 1:ztPd, 
I 

where m is the concnetration in moles/liter. 
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( 6) 

( 7) 

In the case of mono-monovalent electrolytes the resultant limiting law becomes the Onsager-Samaras 
limiting law.2 The general formula they derived has no meaning, since the correction to the limiting law, 
contained in this formula, is of the same order as the quantities neglected by these authors. 

2. Allowance for the dielectric constant of the external medium. In the case of mono-monovalent elec­
trolytes the potential of the electrostatic field, produced by a fixed ion in its atmosphere, with allowance 
for the separation surface between the two dielectrics, is determined by the following equation 

(~- x2) cp =- (4'1tjs) eo (r). ( 8) 

The solution of this equation is substantially more complicated than that for the case considered by On­
sager and Samaras, owing to the fact that the dielectric constant of the external medium is not assumed 
to be zero. The adsorption potential (the potential energy of the interaction of the ion with its electro­
static image, with allowance for screening) turns out to be 

W (z) = ~ r A€- e' y~ e-2/.Z dJ.... 
2e J :Ae+e'V:A2 -x2 

" 
(9) 

In spite of the fact that it is necessary to calculate an integral of a non-elementary function (9), which is 
furthermore in exponential form, it is possible, using the smallness of the parameter of the theory, to ob­
tain an expression for the change in surface tension As in terms of elementary functions 

~a = e2 (e- e') n [In 2 V2. ekT (e + e') + 1_ _ 2 _ ..!_ (e + e' ) 2 ln 2 + ~ In e + c:' J . 
2e(~>+c:') xe•(c:-e') 2 I 2 e-e' (e-e )2 e 

When E' = 0, Eq. ( 10) goes into the limiting Onsager-Samaras law.2 

1 P. Debye and F. Hiickel, Phys. z. 24, 1085 (1929). 
2 L. Onsager and N. T. Samaras, J. Chern. Phys. 2, 528 ( 1934). 
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To analyze the scattering of beams of charged particles by metallic foils it is necessary to solve the 
problem of the spatial and angular distribution of the density produced in the beam as a result of a large 
number of collisions. At a depth T, the particle density in a monoenergetic (E > 10 Mev) beam t/I(IJ., T) 
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propagating at an angle 9 relative to the axis T (IJ. =COS 9) is determined from the boundary problem 

+1 21t 

p. ~+IJI(p., 1:) -{ ~ dp.'ljl(p.', 1:)~ ~J'P(cosx)= 0, ( 1.1) 
-1 0 

cosx=cos6cos6'+sin6sin6'cos'f; ljl(p., O)=B(p.-1), O<p.~1. ljl(p., h)=O, -1-"(p.-"(0. ( 1.2) 

The multiple -scattering distribution tfP (cos x) is assumed known. Usually the problem is solved in the 
small-angle approximation, i.e., subject to the following simplifications: ( 1) the factor 11- in front of the 
derivative ( 1.1) is assumed to be unity, ( 2) the conditions in ( 1.2) are replaced by the initial conditions 
l/1(1J.,0)=6(1J.-1) at -1~11-~1. 

A numerical method proposed by Spencer1 yields a solution in this approximation with an accuracy as 
high as desired for a wide class of problems, permitting representation of the function tfP (cos x) by the 
sum2 

N 

tfP (cosx) = ~ Ai(1 +xi- cosx)-ki, xi~ 1, ki = 1, 2, ... 
i=l 

(2) 

It is noted in Refs. 3 and 4 that along with the good agreement between solutions in the small-angle ap-· 
proximation and experimental results at small angles, there is considerable discrepancy at large angles 
(more than 15% at e > 6° for E = 15.7 Mev), which could not be explained by the authors within the 
framework of this approximation. Investigation of scattering at large angles is very important in connec­
tion with the study of the distribution of charge in the nucleus, of the character of the nuclear potential, 3 

of phenomena connected with polarization, of differences in the scattering of positive and negative parti­
cles, etc. 

Many computations were made to refine the small-angular approximation and to determine the region 
of its validity.2 

1. Corrections for the small-angle approximation calculated by Spencer1 were determined for the 
problem of scattering of 15.7 Mev electrons. In this problem 

tfP (cos x) = Xo ( 1 + Xo- cos xP. Xo = 1.56- 10-6 , h = 118.4. 

This approximation is close to the Gauss function at small angles e2 ~ xoh, and tends to the function 
4x0h/94 at larger angles. 

We represent l/J(IJ., T) as a sum l/Jo + l/Jt + lJ;2 where l/Jo is the solution to the problem in the small­
angle approximation, lJ; 1 is the correction in the same approximation, i.e., the solution of the equation 

+1 21t 

~~~ + IJI1-+ ~ dp.'h (p.', 1:) ~ ~: tfP (cos x) = ( 1- p.) ~~o ( 3) 
'-1 0 

with initial condition l/1 1 (IJ., 0) = 0 ( -1 ~ ll ~ 1 ), while the correction lJ;2 is the solution of the inhomo­
geneous equation corresponding to ( 1.1) with the right half containing ( 1 - 11-) 8lJ; 1/8T. The boundary con­
ditions for l/1 2 (IJ., T) are: 

ljl2 (p., 0) = 0, 0 < p.-"( 1; ljl2 (p., h)= -ljl0 (p., h) --ljlt(p., h), - 1-"( P.-< 0. 

The solution of problem (3) in the small-angle region is well represented by the Gauss function (in e), 
multiplied by a certain polynomial in e2; the asymptotic expression in the large-angle region is 2xoh/02 • 

The absence of a strong anisotropy in the inhomogeneities of the problem for l/12 (IJ., T) makes it possible 

cos 6 0.999 0.99 

<)II([-!., h) 0.1478 0.2349 0 .c 2623 

0.1940 0.01834 

y, (!L, h) I 0.2804 0.2788 0.2651 

0.95 

0.004384 

0.003668 

0.2071 

0.90 

0.001985 

0.001814 

o.141cl 

to seek a solution in each of the intervals 
( 0, 1) and ( -1, 0) in the form of an ex­
pansion in Legendre polynomials Pn (ll) 
with n ~ 3. The table gives the values of 
l/1 1 (IJ., h) for Jl. ~ 0, obtained by numer­
ical integration with Spencer's method, and 
the calculated results for lJ;2 (IJ., h) for 
ll ~ o. 

2. Several general results were estab-
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lished for an arbitrary scattering law, the degree of anisotropy of which is determined by the smallness 
of the parameter 

i.e., by the smallness of the rms angle upon single scattering, The small-angle approximation is repre­
sented by the sum 

o (p.- 1) e-~11'- + /0 (p., 't), 

where Io (p., T) is close to the Gauss function exp (- 82 /e2 ), e2 Rl h, at small angles ( 82 .s Eh ). If 
JJ> (cos x) is taken in the form ( 2 ), the asymptotic expression at large angles is 

211A~h 6-211 , '11 =mink,. 

The free term in Eq. ( 3) is a quantity of the order of E. The function 1f;1 = 0 ( Eh 1/lo) at small angles 
(82 .$h), and 1f;1 = 0 (821f;0/2) at greater angles. Thus, at Eh « 1, as expected, the correction 1f;1 is 
small in the region 02/2 « 1. On the other hand, the comparatively large value of the correction 1f;2 (p., T) 

in this example limits the range of validity of the small-angle approximation to the inequality 1/lo » 1f;2, 

i.e., 84 « Eh. Since in this problem E = x0 lnx0, one would expect that the approximation here is good in 
the region 8 .$ lfto and is acceptable at Eh « 1. To obtain solutions with a sufficient degree of accuracy 
at large angles it is proposed to use the interpolation method developed in Refs. 2 and 5. 

1 L. V. Spencer, Phys. Rev. 90, 146 (1953). 
2 T. A. Germogenova, Dissertation, Division of Applied Mathematics, Mathematics Institute, Academy 

of Sciences, U.S.S.R. (1957). 
3 L. V. Cooper and G. Rainwater, Phys. Rev. 97, 492 (1955). 
4L. V. Spencer and J. Blanchard, Phys. Rev. 93, 114 (1954). 
5 T. A. Germogenova, Dokl. Akad. NaukSSSR 113, No.2 (1957). 
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THE spectra of fission neutrons from u235 , u233, and Pu239 have been reported in a number of papers .1 - 10 

Measurements of the fission neutron spectrum from u235 (Refs. 1-8) are in satisfactory agreement with 
the semi-empirical formula of Watt.3 

According to the data of Mukhin, Barkov, and Gerasimov,8 the fission neutron spectra from U233 and 
Pu239 are the same as the spectrum from u235 , within experimental errors of 10-20%. The data of Nere­
son9 and of Grandi and Neuer10 indicate that the neutrons from Pu239 are somewhat harder than those from 
u2s5. 

This note presents a comparison of the neutron spectra from the fission of u 233, U235 , and Pu239 • Vari­
ous neutron detectors were used. 

The fission neutrons were obtained by irradiating samples of U233, U235, and Pu239 with thermal neutrons 
from a reactor. In the first series of measurements, the neutrons were detected by using the thresholds 
of the reactions Pr141(n, 2n)Pr140, AI2'~(n, p)Mg2'l, P 31 (n, p)Si31 , and Au19'~(n, y)Au198 • To compare the 
intensities of the fission neutron sources, we used a fission camera with U233 • The irradiation took place 
inside a cavity 20 x 20 x 40 em in the thermal column of the reactor. 


