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1 

F (kz) = Bp'Tf:Ra ~ K~ (p V 1 + k~ I rJ:2 C) ( sin"1 ~ + ~ V 1 - C2 ) Cd~, (5) 
0 

where K0 (x) is the modified Bessel function, Eo is the energy of the incident deuteron, and M the neu­
tron mass. 

In the limiting case p » 1 this formula becomes the Serber formula 

dcr~ (kz) = (11: I 4) R.RarJ:2dkz I (rJ:2 + k~)'1•. 

Let us determine also the deuteron absorption cross section aa. Since2 

where 

{ ::a p ~ '~m } cr1 = 4r:R2 1- ~ T tan ... P -~-d~ , 
0 

is the integral cross section for all the interactions between fast deuterons and nuclei, then 

When p » 1 we get 

2 R2 r p t ... ~ '~ (~) d~ cra = " .) T an -p -~- ·,. 
0 

( 6) 

(7) 

(8) 

It is possible to determine the influence of the Coulomb field and of the semi-transparency of the nu­
cleus, as was done in Ref. 2. It is easy to see that the Coulomb field affects neither the total cross sec­
tion nor the energy distribution of the particles. The semi-transparency of the nucleus decreases the 
stripping cross section. If the absorption is large, i.e., I b I R » 1 and if p » 1, then 

crn = (r- I 2) RRa { 1- ( 1/21 b 12 R2)}. 

1R. Serber, Phys. Rev. 72, 1008 (1947-). 
2 A. I. Akhiezer and A. G. Sitenko, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 794 ( 1957 ); Soviet Phys. 

JETP 5, 652 ( 1957). 
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( 9) 

THE paramagnetic resonance spectra of rare-earth ions have been intensely investigated in recent 
years by Bleany and his colleagues. The measurements were made primarily on ethyl-sulphates 
M(C2H5so4 )so 9H20, where M is a rare-earth ion. A study of the paramagnetic resonance of rare-earth 
ions in other compounds is also of great interest. At the suggestion of S. A. AYtshuler and B. M. Kozy­
rev, we began an investigation of the nitrates of rare-earth elements, M(N03 )a· 6H20. 

The measurements were made at a wavelength of 3.2 em at liquid-hydrogen temperatures using a bal-
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anced superheterodyne radio-spectroscope of the type described by Manenkov and Prokhorov .1 We inves­
tigated the paramagnetic resonance spectrum of neodymium nitrate, diluted with lanthanum in the ratio 
Nd : La = 1 : 200. 

The spectrum consists of one intense line and 16 weak lines of the hyperfine structure (see diagram). 
This is in full agreement with the measurements of the paramagnetic resonance spectrum of neodymium 
in ethyl sulphate.2•3 

Natural neodymium has isotopes with atomic weights 142, 143, 144, 145, 146, 148, and 150. The hyper­
fine structure is due to the odd isotopes 143 and 145. The remaining isotopes have a nuclear spin I = 0 

Oscillograms of paramag­
netic-resonance spectrum in 
neodymium nitrate: (a) x axis 
parallel to the constant mag­
netic field; hyperfine . splitting 
lines almost equidistant; (b) y 
axis parallel to the constant 
magnetic field; strong second­
order shifts are visible. 

and yield one strong line. The Nd143 content is 12.2%, and that of 
Nd145 is 8.3%. Accordingly, the hyperfine structure is broken up into 
two groups, each consisting of eight lines. This corresponds to a 
nuclear spin I = % for each isotope. The line intensity in one group 
is approximately 1.5 times greater than that in the other group. The 
stronger lines were therefore attributed to Nd143 and the weaker ones 
to Nd145. 

The line width varied linearly from 13 to 18° K, and broadened 
so much at 20° K to become unobservable. It must be noted that in 
ethyl sulphate practically no line broadening due to spin-lattice re­
laxation was observed even at 20° K. 

The line width in the nitrate was inversely proportional to the 
g-factor even at 13° K. This indicates that the spin-lattice relaxa­
tion makes the major contribution to the line width.4 

The spectrum is described by the following spin Hamiltonian: 

+ AzSzfz + Pxf! + Pyf; + Pzf;, 

where S is the effective spin, equal to %; gx, gy, gz are the prin­
cipal values of the g-factor; Hx, Hy, Hz are the components of the 
constant magnetic field, Ax, Ay, Az and Px, Py, Pz are the con­
stants of the hyperfine and quadrupole interaction, I is the nuclear 
spin, and {3 is the Bohr magneton. 

To find the x, y, and z axes we worked out together with A.M. Prokhorov and simple procedure, 
consisting essentially of first setting the crystal, mounted in an arbitrary manner, to the extremal value 
of the g-factor, cutting it in the plane of the axis of rotation and the magnetic field plane, and mounting 
it in this plane (provided the extremal g-factor is close to the principal value). 

The principal values of the g-factors are 

gx=3.88+0.01, gy= 1.72+0.01, gz=0.74+0.01. 

The following values were obtained for the hyperfine splitting constants (in units of 10-4 cm-1 ): 

isotope 143: Ax= 432 ±2, Ay = 193±2, Az = 82±10, 
isotope 145: Ax= 270±2, Ay= 119±2, Az = 51±10. 

It is possible to estimate the upper limit of the quadrupole coupling constants I Px- Pz I < 50 x 10-4 cm-1 

and I Py - Pz I < 50 x 10-4 cm-1 for both isotopes. 
It is easy to see that the hyperfine splitting constants obey the following approximate equality: 

Ax: Ay: Az = gx: gy: gz. 

The ratios 

A~43 1 A~5 = 1.60 0.02, A~43 1 A~45 = 1.62 + 0.04 

are numerically equal to the ratios of the magnetic moments of the Nd143 and Nd145 nuclei and are in good 
agreement with results obtained by Bleaney et al. within the limits of experimental accuracy.2• 3 

In conclusion the author expresses his gratitude to E. L. Andronikashvili, A.M. Prokhorov, G. R. 
Khutsishvili, G. M. Mirianashvili, and A. A. Manenkov for valuable advice, counsel, and constant interest 
in this work, and also to D. S. Tsakadze, M. Koloch, and G. A. Tsinadze for taking part in the measure-· 
ments. 
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THE expression for the single-photon mass operator of a scalar particle, obtained by one of the au­
thors, 1 was used to calculate the radiation corrections to the scattering of a scalar particle in an external 
electromagnetic field and to the Compton effect. The following expressions were obtained thereby for the 
differential cross sections. 

1. The differential scattering cross section (in the first Born approximation) has the following form 

dcr I d0. = (dcr I dD.)o + (dcr I dD.)~M + (dcr I dD.)A• , (1) 

where (do/dn )o is the differential scattering cross section without allowance for radiation corrections, 
and the indices .6-M and A' distinguish the radiation corrections from the mass operator and from the 
polarization of vacuum, respectively .2•3 For the first correction in ( 1) we have the following formula 

(dcr I dD.)~M = - (2~ I rr) (dcr I d0.) 0 [2y coth 2y (h (2y)- h (y))- y tmhY+ In), (I - 2 y coth 2y)], 

y 

h (y) = y-I ~ <p coth r.pd<p; sinh 2 y =(PI- p2)2 j 4m2 , (2) 
0 

where A is the photon mass in units of m; p1 and p2 are four-dimensional particle momenta before 
and after scattering, and a = e2 I 4. {We use a system of units in which ti = c = 1.) 

For the second correction we have 

a ( dcr \ [ 4 m2 + (PJ - P2l2 1 ] 
(dcr I dD.) A'o = --;r dO. lo 3 (PJ -- Pz)' (I - y coth y) + 9 ( 3) 

if the vacuum polarization is due to particles with zero spin, and 

2a ( dcr \ [4m~/,- 2 (Pt- Pz)2 1 J 
(dcr I dD.) A;,, = - ----;< dO. Jo 3 (Pt- Pz)2 (I - Y•J, coth Y•J,) + 9 ' sinh 2 Y•J, = (PI - P2)2 I 4m?l,, (4) 

if the vacuum polarization is due to particles with spin %. 
When A approaches zero, formula {2) diverges logarithmically. This divergence is offset by an an­

alogous divergence in the inelastic-scattering differential cross section of the particle with emission of 
a single soft photon. 

(dcr ld0.)inel=- 2: (dcr I d0.) 0 {(I- 2 ycoth 2y) [In (Krr;._ax) -+ J + 4ycoth2y (h(2y)- 1) } , {5) 


