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degree of non-isothermal nature of Te /Tp and on the masses of the atoms of the gas in which the dis
charge takes place. For light gases the transverse field does not change its sign, while in a discharge in 
heavy gases there exists such a magnetic field, for which the sign of the transverse gradient reverses.* 
In the case of light elements relation ( 1) can be represented as 

Efj I Er = (ZH I Z) (1 + b~H2 I C2), 

and for fields less than 1,000 gauss it reduces to 

E~ I Er = zH I z. 

(1a) 

(1b) 

To compare ( 1b) with experimental results we employed measurements of the longitudinal gradient in 
neon with and without a magnetic field. The ratio of the transverse fields obtained from the longitudinal 
gradients with the aid of formula ( 1b) gave a result that was in satisfactory agreement with the measure
ments of Bicerton and Engel.1t 

In the case of heavy elements Eq. ( 1) becomes 

Elj / Er = (ZH I Z) [ 1- (Dpb~- Deb~) H 2 I (De- Dp) c2], ( 1c) 

and the magnetic field at which the transverse gradient vanishes is determined by 

H~ = c2 (D.- Dp) I (Dpb~- Deb~). (2) 

In the case of discharge in mercury vapor at a pressure 10-2 mm mercury and Te/Tp = 102 the value 
of the magnetic field determined by (2) is approximately 2,000 gauss; at larger fields the transverse 
gradient should reverse its sign,f However, experiments in which such a phenomenon would be observed 
are unknown to this author, and it is therefore impossible to compare the calculated and experimental 
results. 

In conclusion I feel it my duty to thank Professor Ia. P. Terletskii and A. A. Zaitsev for advice in var
ious problems touched upon in this work. 

*When Te/Tp = 102 and the free paths are gas-kinetic, the sign of the space .charge cannot change for 
a gas of atomic weight less than 15. 

t If the magnetic fields are large, the ratio ( 1a) tends to a constant value, as can be verified by using 
the equations from the Schottky theory. 

fThe phenomenon can be studied at fields less than H0• In this case the ratio of the gradients in a 
discharge in light gases should approach asymptotically a constant value, something that does not happen 
for heavy gases. 

1 R. J. Bicerton and A. Engel, Proc. Phys. Soc. 69B, 468 ( 1956). 
2 G. Ecker, Proc. Phys. Soc. 67B, 485 (1954). 
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SERBER1 determined the cross section of the stripping reaction under the assumption that the nuclear 
radius R is considerably greater than the deuteron radius Rd. This, however, is a poor assumption 
even for the heaviest nuclei, where the ratio p = R/Rd reaches approximately 5. It is therefore de sir-
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able to determine the cross section of the stripping reaction without assuming R » Rd. This commun
ication is devoted to this problem. 

Let us consider, to be specific, a reaction that causes a nucleus to liberate a neutron and absorb a 
proton. This process can be described by a wave function it= flnt/lo (Pd)<Po (r), where <Po (r) =...; a/21r 
x e-Ol/r is the wave function of the deuteron ground state (a= 1/2Rv ), t/Jo (Pd) = 1 is the portion of 
the wave function describing the motion of the center of gravity of the deuteron in a plane perpendicular 
to the momentum of the incident deuteron, and fln is a factor allowing for the absorption of neutron by 
the nucleus; this factor, in the case of an absolutely black nucleus, is 

{0 Pn < R. 
Q.n=!J.(pn) = 1 Pn> R. 

( Pn is the projection of the neutron radius vector on the plane perpendicular to the momentum Po of the 
deuteron). . 

Expanding it into a Fourier integral in the functions e -Ikrn (rn is the radius vector of the neutron), 
we determine the amplitude of the probability ak (rp) that the neutron has a wave vector k and the pro
ton is located at the point rp: 

Integrating I ak (rp )12 with respect to dpp from Pp = 0 to Pp = R we obtain the differential strip
ping cross section dan for which the wave vector of tlie neutron lies in the interval dk. 

dan= (:~s ~ dpp I ak (pp) 12 = (2~~8 ~ dpp {1 - j QP 12} I ak (pp) 12, (1) 
Pp<R 

where flp = Q (Pp ). 
The total stripping cross section is obviously 

On= ~~ dppdrn {1 -I Q.P 12} I Q.n /2 'f'~ (r). 

expanding {1 -ln(p)l2} into a Fourier integral 

(2) 

1 -I Q (p) 12 = ~X (g) eigp dg, z(g) = R.Jl (gR.) I 2rrg, 

where J 1 (x) is the Bessel function, we get 

00 J2 ") 
R.2 { 1 2 \' p ..1 ~ 1 (.., d" } an= rr - .) T tan p -~- ~ · ( 3) 

0 

In the limit for large p this formula becomes the Serber formula 

a~) = rrR.R.a I 2. (4) 

0..5 

The diagram shows the variation of an with p. In the case of lead p = 4.2 
and Eq. (3) yields an= 3.2 x 10-25 cm2, while Serber's formula gives a~>= 2.7 
x 10-25 cm2• When p = 1, an= 5.8 x 10-26 cm2 and J~l = 6.9 x 10-26 cm2• 

Formula ( 3) determines also the stripping cross section ap of the proton. 
To obtain the energy distribution of the freed neutrons it is necessary to in

tegrate ( 1) over the perpendicular components of the vector k: 

dan (kz) = d:: ~ (g;)" ~ dpp { 1 -I Q.P 12} I~ dpne -I><Pn D.n ~dze1k2z'f'o (r) 1
2

, 

where K is the projection of vector k on the plane perpendicular to p0• Using 
the completeness of the functions eiKPn and expanding I fln 12 and I flp 12 into 
Fourier integrals, we obtain finally 

dan(kz) = F (kz)dk2 , kz = (E- Eol2)1n VEol M, 
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1 

F (kz) = Bp'Tf:Ra ~ K~ (p V 1 + k~ I rJ:2 C) ( sin"1 ~ + ~ V 1 - C2 ) Cd~, (5) 
0 

where K0 (x) is the modified Bessel function, Eo is the energy of the incident deuteron, and M the neu
tron mass. 

In the limiting case p » 1 this formula becomes the Serber formula 

dcr~ (kz) = (11: I 4) R.RarJ:2dkz I (rJ:2 + k~)'1•. 

Let us determine also the deuteron absorption cross section aa. Since2 

where 

{ ::a p ~ '~m } cr1 = 4r:R2 1- ~ T tan ... P -~-d~ , 
0 

is the integral cross section for all the interactions between fast deuterons and nuclei, then 

When p » 1 we get 

2 R2 r p t ... ~ '~ (~) d~ cra = " .) T an -p -~- ·,. 
0 

( 6) 

(7) 

(8) 

It is possible to determine the influence of the Coulomb field and of the semi-transparency of the nu
cleus, as was done in Ref. 2. It is easy to see that the Coulomb field affects neither the total cross sec
tion nor the energy distribution of the particles. The semi-transparency of the nucleus decreases the 
stripping cross section. If the absorption is large, i.e., I b I R » 1 and if p » 1, then 

crn = (r- I 2) RRa { 1- ( 1/21 b 12 R2)}. 

1R. Serber, Phys. Rev. 72, 1008 (1947-). 
2 A. I. Akhiezer and A. G. Sitenko, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 794 ( 1957 ); Soviet Phys. 

JETP 5, 652 ( 1957). 
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( 9) 

THE paramagnetic resonance spectra of rare-earth ions have been intensely investigated in recent 
years by Bleany and his colleagues. The measurements were made primarily on ethyl-sulphates 
M(C2H5so4 )so 9H20, where M is a rare-earth ion. A study of the paramagnetic resonance of rare-earth 
ions in other compounds is also of great interest. At the suggestion of S. A. AYtshuler and B. M. Kozy
rev, we began an investigation of the nitrates of rare-earth elements, M(N03 )a· 6H20. 

The measurements were made at a wavelength of 3.2 em at liquid-hydrogen temperatures using a bal-


