$$dW_{\gamma E0} (L \text{ III}) = 2.2 \frac{2^{4\gamma - 2} [\Gamma (\gamma_1 + \gamma + 1)]^2}{\Gamma (2\gamma_1 + 1) [\Gamma (2\gamma + 2)]^3} W_{E0} (L \text{ I}) \left\{ \left[I_2^{\nu_0} + \frac{(\gamma + 3) (\gamma + 4)}{6} \xi^2 \mathfrak{M} \right]^2 \right\}$$

$$+\frac{9}{32}\left[\frac{(2\gamma+1)(\gamma+3)(\gamma+4)}{15}\right]^{2}\xi^{4}\left(\Re+\frac{5}{3}\Re\right)^{2}\right]\delta\left(\Delta-\varepsilon_{1}-k-\varepsilon_{f}+1\right)\xi d\xi d\varepsilon_{f}, \quad \gamma=\sqrt{1-\alpha^{2}}, \quad \gamma=\sqrt{1-4\alpha^{2}},$$

where Δ is the nuclear transition energy and ϵ_1 is the binding energy of the L electron, equal to $(\text{Ze}^2)^2/8$.

If $\Delta \gg \alpha^2$ it is easy to estimate the lower limit of the total transition probability:

$$W_{\gamma E_0}(L \text{ II}) \gg W_{E_0}(L \text{ I}, \Delta) \frac{1}{137} 1.2 \frac{2^{4\gamma-2}}{[\Gamma(2\gamma+1)]^2} \frac{\alpha^2}{16} C, \quad W_{\gamma E_0}(L \text{ III}) \gg W_{E_0}(L \text{ I}, \Delta) \frac{1}{137} 2.2 \frac{2^{4\gamma-2}[\Gamma(\gamma_1+\gamma+1)]^2}{[\Gamma(2\gamma_1+1)[\Gamma(2\gamma+2)]^3} \frac{\alpha^2}{16} C,$$

where the constant C is $\gtrsim 2$.

For the ratio of the two probabilities we obtain

 $W_{E_0}(L \text{ II}) / W_{\gamma E_0}(L \text{ II}) \leq (1.37 \cdot 10^3 / C) 2^{3-4\gamma} [\Gamma (2\gamma + 1)]^2 p_f^2 (\varepsilon_f + 1)^{-2}.$

if $\Delta \sim \alpha^2$ the ratio of the probabilities can be on the order of unity, owing to the smallness of p_f . The ratio $W_{E_0}(LIII)/W_{\gamma E_0}(LIII)$ does not exceed 10^{-4} to 10^{-5} for all values of Δ .

Also possible for the LIII electron is a $\gamma - E0$ conversion with a transition first into the state $j = \frac{1}{2}$, l = 1 and emission of a M1 and E2 quantum. In this case, however, the probability $dW_{\gamma E0}$ is proportional to W_{E0} (LII) and is considerably less than the probability $dW_{\gamma E0}$ of a process with emission of an E1 quantum.

¹D. P. Grechukhin, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 103 (1957), Soviet Phys. JETP 5, 846 (1957).

Translated by J. G. Adashko 201

SIGN OF THE SPACE CHARGE ON THE AXIS OF A POSITIVE COLUMN IN A LONGI-TUDINAL MAGNETIC FIELD

M. V. KONIUKOV

Tula Pedagogical Institute

Submitted to JETP editor May 11, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1039-1040 (October, 1957)

THE magnitude of the space charge in a positive column, together with the magnitude of the transverse electric field, depends for a given current not only on the temperatures and masses of the particles and on the pressure, but also on the superimposed external longitudinal magnetic fields.¹ To calculate the deviation from the quasi-neutrality on the discharge axis one can use a scheme analogous to that proposed by Ecker.² However, since direct measurements of the excess space charge is difficult, it is advantageous to change over to transverse gradients.

The ratio of the transverse gradients near the axis in a magnetic field and without the field is given by

$$E_{r}^{H}/E_{r} = Z^{H}(L_{e}^{H} - L_{p}^{H})(D_{e}b_{p} + D_{p}b_{e})/Z(D_{e} - D_{p})(L_{e}^{H}b_{p}^{H} + L_{p}^{H}b_{e}^{H}),$$
(1)

where D_e , D_p , b_e , and b_p are the coefficients of diffusion and mobility of the electrons and ions without a magnetic field (while the index H denotes the presence of a magnetic field), and Z is the ionization coefficient.

Under conditions usually existing in the positive column of a gas discharge, the transverse field decreases in the presence of a longitudinal magnetic field. The character of the decrease depends on the degree of non-isothermal nature of T_e/T_p and on the masses of the atoms of the gas in which the discharge takes place. For light gases the transverse field does not change its sign, while in a discharge in heavy gases there exists such a magnetic field, for which the sign of the transverse gradient reverses.* In the case of light elements relation (1) can be represented as

$$E_r^H / E_r = (Z^H / Z) \left(1 + b_p^2 H^2 / c^2 \right), \tag{1a}$$

and for fields less than 1,000 gauss it reduces to

$$E_r^H / E_r = Z^H / Z. \tag{1b}$$

To compare (1b) with experimental results we employed measurements of the longitudinal gradient in neon with and without a magnetic field. The ratio of the transverse fields obtained from the longitudinal gradients with the aid of formula (1b) gave a result that was in satisfactory agreement with the measurements of Bicerton and Engel.¹ \dagger

In the case of heavy elements Eq. (1) becomes

$$E_r^H / E_r = (Z^H / Z) \left[1 - (D_p b_e^2 - D_e b_p^2) H^2 / (D_e - D_p) c^2 \right],$$
(1c)

and the magnetic field at which the transverse gradient vanishes is determined by

$$H_0^2 = c^2 \left(D_e - D_p \right) / \left(D_p b_e^2 - D_e b_p^2 \right).$$
⁽²⁾

In the case of discharge in mercury vapor at a pressure 10^{-2} mm mercury and $T_e/T_p = 10^2$ the value of the magnetic field determined by (2) is approximately 2,000 gauss; at larger fields the transverse gradient should reverse its sign.[‡] However, experiments in which such a phenomenon would be observed are unknown to this author, and it is therefore impossible to compare the calculated and experimental results.

In conclusion I feel it my duty to thank Professor Ia. P. Terletskii and A. A. Zaitsev for advice in various problems touched upon in this work.

*When $T_e/T_p = 10^2$ and the free paths are gas-kinetic, the sign of the space charge cannot change for a gas of atomic weight less than 15.

† If the magnetic fields are large, the ratio (1a) tends to a constant value, as can be verified by using the equations from the Schottky theory.

[‡]The phenomenon can be studied at fields less than H_0 . In this case the ratio of the gradients in a discharge in light gases should approach asymptotically a constant value, something that does not happen for heavy gases.

¹R. J. Bicerton and A. Engel, Proc. Phys. Soc. 69B, 468 (1956).

²G. Ecker, Proc. Phys. Soc. 67B, 485 (1954).

Translated by J. G. Adashko 202

CONTRIBUTION TO THE THEORY OF STRIPPING AT HIGH ENERGIES

A. I. AKHIEZER and A. G. SITENKO

Khar'kov State University and Physico-Technical Institute, Academy of Sciences, Ukrainian S.S.R.

Submitted to JETP editor May 23, 1957

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 1040-1042 (October, 1957)

 S_{ERBER^1} determined the cross section of the stripping reaction under the assumption that the nuclear radius R is considerably greater than the deuteron radius R_d. This, however, is a poor assumption even for the heaviest nuclei, where the ratio $p = R/R_d$ reaches approximately 5. It is therefore desir-