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The scattering of slow neutrons in ferromagnets is analyzed, using the theory of spin-waves. 
The analysis is applied to single crystals and to polycrystals. 

1. INTRODUCTION 

Tms paper will deal with the scattering of slow neutrons in ferromagnets, at low temperatures where 
the behavior of the ferromagnet is described by spin-wave theory. This problem has been recently dis­
cussed by several authors.1 - 4 The most complete discussion is that by Elliott and Lowde. They con­
sider mainly the inelastic scattering of neutrons in a single crystal, the scattering being accompanied by 
the emission or absorption of a spin-wave of small momentum, and the temperature being not too low so 
that the energy-spectrum of spin-waves is given by the Rayleigh-Jeans formula. The case of greatest 
physical interest, the diffuse scattering close to a Bragg reflection, is described satisfactorily by their 
theory. However, the assumptions which they make are not necessary; the cross-sections can be calcu­
lated without any such assumptions, and the results remain simple in form. 

We find that, when the neutron wave-length is much greater than the lattice-constant, the large-angle 
scattering of a neutron is accompanied by the absorption of a spin-wave of large momentum for which 
the Rayleigh-Jeans distribution is usually incorrect. Therefore the statement4•5 that the long-wave­
length inelastic scattering cross-section is proportional to temperature becomes correct only at temper­
atures low compared with the ferromagnetic exchange interaction. 

In this paper we calculate the elastic scattering, and the inelastic scattering in single crystals and 
polycrystals with absorption or emission of one-spin wave, and we also estimate the magnitude of proc­
esses in which more than one spin-wave is emitted or absorbed. 

2. DERIVATION OF THE CROSS-8ECTION FORMULAE 

We consider neutrons in a ferromagnet being scattered by magnetic interaction with the atomic spins. 
We do not include the scattering due to the interaction with the orbital part of the atomic magnetic mo­
ments, since this scattering is identical with the scattering in a paramagnetic medium and was calculated 
by Migdal.5 Because the orbital moments are randomly oriented, there is no interference between the 
orbital and spin contributions to the scattering. For a detailed investigation of inelastic scattering we 
need to know the wave-functions of the scatterer; we are therefore restricted to the low range of temper­
atures (far below the Curie temperature) in which a detailed theory of ferromagnetism, the spin-wave 
theory, is valid. 

The matrix elements of the interaction of a neutron with the spins of a system of N identical atoms 
have been calculated by Halpern and Johnson.8 They have the form 

(1) 

Here p is the neutron wave-vector, n is one component of its spin, and a is the state of the ferromag­
net, initially. In the final state the corresponding quantities are p', n', a'. 'Y is the neutron magnetic 
moment in nuclear magnetons, S is its spin, r 0 = e2/mc2, M is the neutron mass, q = p- p', e = q/q, 
St and Rt are the spin and position of atom number !, 

\ z eiqPvs S 
F (q) = ~ d-t'Y~.~ Sz(Sz + ;) 'Yz, (2) 

v-1 
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"Ill£ is the wave-function of atom number £, s 11 and p11 are the spin and position of electron number v, 
and the sum extends over the z electrons in the atom. 

The matrix elements of the operator L exp (iqR£ )S£ can be easily calculated from spin-wave theory 

in the form introduced by Dyson.1•8 The operators s; and S~ = s; ± iSf are connected with spin-wave 
absorption and creation operators in the following way (see the Appendix). 

(3a) 

Si = (2SN-I)'I• ]e-if>-Rta~, (3b) 
f'-

S[ = (2SN-1)'1'] e-i~Rtl ct_f'-- (2SN)-1 ~ at+a+f'- ct;.cta ]. 

f'- ~cr 
(3c) 

where the z-axis is along the direction of magnetization of a domain, ap. and at are absorption and 
emission operators for a spin-wave with wave-vector p. and energy 

cf'- = JS ](1-·ei~>B) =}JSToa2!-'-2, 
8 

(4) 

J is the ferromagnetic exchange integral, l5 is a vector joining any atom of the lattice to one of its near­
est neighbors, and Yo is the number of nearest neighbors over which the c5-summation extends.* 

Equation ( 3 ) implies the existence of the following types of scattering. ( 1) Elastic. ( 2) With emis­
sion of one spin-wave. (3) With absorption of one spin-wave. (4) With emission of one and absorption 
of one spih-wave. ( 5) With emission of one and absorption of two spin-waves. The corresponding cross­
sections are 

I) (5a) 

2) ( 5b) 

3) d:n~ = ; Srh2 p2 (q) ~ I ~ ei <q+f>-> RL /z (;;)" e-2Wq ~ ( 1 + e;)'( a,, ( 1-~ a 'A INS)) df1; 
l 'A~f'-

( 5c) 

4) (5d) 

5) d I \2 v3 , <>+1. -2 = ___!_ ,2,,2p2 (q) __!_ ~ ei <q+v+a-~>) Rt e-2 Wq - 0- !!_ (a a (a + 1)> ( 1 + e2) d•• dv da. 
dO. 2S 0 1 N LJ (27t)" p " " f'- ' z r 

l 

(5e) 

Here v0 is the volume of the unit cell, e - 2Wq is the usual temperature factor, 3.p. is the number of 
spin-waves with wave-vector p., and < > denotes an average over the initial states of the scatterer, 
so that < 3.p. > is the Planck distribution-function which we shall denote by n (p.). 

In this paper we study the cross-sections ( 5a)- ( 5c ). A detailed investigation of ( 5d) and ( 5e) will 
be made later. 

3. ELASTIC SCATTERING 

Consider Eq. ( 5a). At low temperatures I: ap./NS « 1, and we may neglect the square of this quan­
tity. Its mean value is just equal to the deviation of the spontaneous magnetization at temperature T 
from its value at T = 0. When the number N of atoms in the crystal is large, 

*We consider only ferromagnets of cubic symmetry. 
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! J ~ exp (iqRL) J2 = (2;)s ~ o (q- 't), 
l 0 ~ 

(6) 

where T is a vector of the reciprocal lattice multiplied by 2rr. Therefore Eq. ( 5a) becomes 

(7) 

This expression was obtained by Van Hove9 by a different method. From spin-wave theory we have 

G (T) = ~ (%) (T I 2rr:Tc)'l• + 0 [(T I 2rr:Tc)'l•J, (8) 

where ~ ( x) is the Riemann zeta-function, v = t52v0 - 2/ 3, and T c = JSy0v/3k is approximately equal to 
the Curie temperature.8 Equation ( 8), like the spin-wave theory and like our whole treatment of neutron 
scattering, is valid, as shown for example by Dyson,8 when T « Tc/2v. 

A detailed theory of ferromagnetism is not necessary to derive Eq. ( 7). In fact Eq. ( 7) follows di­
rectly from Eq. ( 1), if we use the following three pieces of information. (a) The translational symme­
try of the crystal implies that the matrix element (a I Sf I a) is independent of 1.. (b) The definition of 
G ( t) requires 

s-2 ((a[S~[a)2 )=1-2G(T) 

(c) The matrix elements (a I st I a) are zero, since the operator st changes by one unit the z-com­
ponent of the total spin and this z-component is a constant of the motion. Therefore Eq. ( 7) can easily 
be generalized to the case of scattering by antiferromagnets. In the simplest case, an antiferromagnetic 
crystal can be considered as composed of two equivalent sub-lattices, interpenetrating each other and 
magnetized in opposite directions. The only difference from the ferromagnetic case is that the matrix 
elements (a I sf I a) reverse their signs when we go from one atom to any of its nearest neighbors, the 
absolute values still being equal. Accordingly we may write 

(a/ S1[ a)= (a i Sf I a)' exp (iwRz), 

where (a I sf I af is independent of 1., and w is any vector of the reciprocal sub-lattice which does 
not belong to the reciprocal lattice. Thus Eq. ( 7) remains valid for the scattering by an antiferromag­
net, if we replace the vectors T by w, and define G(t) with reference to either sub-lattice. By ob­
serving the scattering of neutrons in antiferromagnets we may obtain information about the temperature­
dependence of the spontaneous magnetization in the sublattices. 

Averaging Eq. ( 7) over the direction of T, we obtain the scattering cross-section in a polycrystal 

( 9) 

where gT is the number of distinct reciprocal lattice-vectors with length T, and 

e; = [cos ~ sin 'f sin~- sin ~ cos ~r. ( 10) 

where e0 is the scattering angle which satisfies the condition sin( 80/2) = T/2p, ~ is the angle between 
p and the z-axis, and cp is the polar angle of the vector p' measured in the plane perpendicular to p 
from the direction [p x z ]. 

The total elastic scattering cross-section in a polycrystal is 

( 11) 

4. SINGLE-SPIN-WAVE SCATTERING IN A SINGLE CRYSTAL 

Starting from Eqs. ( 5b), ( 5c), and ( 6), and neglecting ~ ~/NS in comparison with unity in Eq. ( 5c), 
we obtain the cross-section for single-spin-wave scattering in a single crystal,* · 

*Equation ( 12) coincides with Elliott and Lowde's formula4 for the single-spin-wave scattering, if we 
replace n (JL) + % ± % by 6kT /JSy0t52JL 2 • 
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( 12) 

' The vectors p , p, and 1.1. are connected by the energy conservation law: 

p'2 = p2+ (2M jt2) s (p.) = p2 + 1Xf12. ( 13) 

Here the minus sign holds for scattering with emission of a spin-wave, the plus sign for scattering with 
absorption. For ion a ,..., 100, and in general a » 1. In Eq. ( 12) we may replace q by T everywhere 
except in the argument of the o-function. This is because the whole spin-wave theory, and Eq. ( 13) in 
particular, only holds for p.o < 1. 

We study first the case of absorptive scattering. Integrating Eq. ( 12) with respect to p. and using 
Eq. ( 13), we find 

da:_1 / dD. = (da:_l / dD.)+ + (da:_l / dil)_; (da:_1 / dil)± =-} Sr~l F2 ('t) e-2w ~ (1 + ('tm)2 / 't2) n (f1t-) ( 14) 

Pa [cos~± V cos2 ~- cos2 .&0 ]2 • ( 15) 
X p(a-1)2 Vcos•~-cos2 ~0 ' 

f1±(cos .&) = ~ ~a1 )• [(cos.&± ll cos2 .&- cos2 .&0 ) 2 - (a-; 7 *J. ( 17) 

Here ,'} is the scattering angle measured from the direction P = p + T, and m is a unit vector in the 
direction of magnetization. The magnitude of the momentum of the scattered neutron is given by 

' aP ~/ P+. = a- 1 (cos.&+ v cos2 .&-cos2 &0), ( 18) 

and the range of variation of cos ,'} is 

( 19) 

Since cos2 ,'} 0 < 1, it follows that 

T!_ < _a_ for cos 'Y >- _!_ (_:::_ + _!_ _E_) ( 20) 
p2 a-1 2 p a 't" ' 

where if is the angle between p and T. Equation ( 16) implies cos2 .'t0 > 1 - ( 1/ a), and since a » 1, 
also ,'} < a-1f2. Thus the scattering with absorption of a spin-wave occurs only in a narrow cone around 
the axis P = p + T. To each direction of scattering within this cone there correspond two values given 
by Ea. ( 18) for the scattered neutron momentum. 

ByEq.(17), p.~(cos.'t) decreasesand p..:_(cos.'t) increaseswithincreasing .'t. Thus 

f1;_ ( 1) > f1;_ (cos &0) = f1:_ (cos .&0) > f1:_ ( 1) • (21) 

From Eqs. ( 14), ( 15), and ( 21) we deduce the formula for the total cross-section 

~ 1 S 2 2p2 ( ) [ 1 + ('t"m)21 -zW~ ( P'2)_1 2vT I 1- exp {- Tc~2fL;_ (1) (2\iT)-1}" a 1 = - 7t r oi 't -- 1 e p c - n -----=-----:---------:--
- 2 _ 't"2 J Tc 1-exp {- Tc82[J.:_ (1) (2vT)-1} 

(22) 

We next study a few limiting cases. 
I. P = p. Then Eqs. ( 16) and ( 17) give 

cos2 .&0 = 1- IX-2 , f1~- (1) = 4p2 j (oc -1)2 , f1:_ (1) = 0. 

If also p and T satisfy 

4p2o2 j (oc -1)2 ~2vT fTc, 

then n(p. +> can be approximated by < 2vT/Tc >p.~o2 in Eq. ( 15), and the cross-section becomes pro­
portional to temperature. As ,'}- 0 the cross-section tends to infinity. However, Elliott and Lowde4 

have shown that the infinity does not actually occur, since the minimum wave-vector of a spin-wave is 
different from zero and is of the order of magnitude 211/oN1/ 3, where N is roughly the number of atoms 
in a domain. Therefore the cross-section becomes 
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~ _ 1 S 2 2p2 ( ) [1 + ( )2 / 2] -2W~ 2vT ( ~)-2 l p282N'l, a_1 - -2 7t r0j 't m~ 't e T pu n . 
c n2(cr;-1)2 

( 23) 

When P = p there is also elastic scattering. 
II. If p 1:- P but IL~ ( 1) 152 « 2 vT /T c• the cross -section remains proportional to temperature, 

a::_l = i Sr~/ p2 ('t) [1 + (m't)2 I 't2] e-2W~ (pP82)-I2vT In 1-1.~ (1). 
Tc !J.~ (1) 

(24) 

III. If IL:_( 1)152 > 2vT/Tc• the cross-section is proportional to 

exp {- 1.1.~ (1) 82Tc/2vT}- exp {- 1.1.~ (1) 82Tc/2vT}. 

But this expression is very small compared with unity, and so there is practically no neutron scattering 
with spin-wave absorption in this case. 

The cross-section is a maximum when p2 = P2• As p2 decreases, IL:_( 1) increases and hence the 
cross-section decreases. 

We next consider the scattering with spin-wave emission. As in the case of absorption, we find 

dcr"t-1 /dD. = (dcr+IJdD.)+ + (dcr+.I/dD.)_; 

(dcr"t-I / dD.)± =} Srh2p2 ("=) e-2W~ [1 + (m't)2 I 't2] 

, Per; [ r a; + 1 ( 1 p2 )]2 [ a; + 1 ( 1 p2 )]-'/, x [n(!-'±)+1l(cr;+ 1)2 cos&+V cos2 &--cr;- 1--aF cos&--cr;- 1-aFZ ; 

'2 - cr;p2 {("' + 1)2 p2 [~ / 2 a; + 1 ( 1 p2 ) ]2} . !-'±(cos&)-(cr;+ 1>2 -cr;- p2- V cos&---cr;- 1- aF2 +cos& , 

' cr;P [ ( 2 a; -1- 1 ( 1 p2 )] P± = -- cos & + cos & - -- 1 --- . cr;-j-1 - a - a p2 

Scattering is now possible only when 

~: >a; ~ 1 or coso/<-} ( f - ~ f). 
Since cos 'It ::::: -1, Eq. ( 29) implies that scattering will occur with spin-wave emission only when 

P> IX'tCV1 + (1 /IX) -1) = ('t/2) (1- (1 I 41X)). 

We need to consider two cases 

We discuss case ( 1) first. As in the discussion of absorptive scattering, cos .1} varies within the 
range 

(25) 

( 26) 

(27) 

(28) 

( 29) 

( 30) 

1 :>-cos&:>-cos&I>O (31) 

and to every scattering angle .1} correspond two outgoing neutron momenta given by Eq. ( 28). Also 
1-L') (cos .1}) increases and IL~ (cos .1}) decreases with increasing -1}, so that 

~.~.:: (1) >!-'::_(cos &I)= 1.1.:f- (cos &I)> 1.1.:f- (1). ( 32) 

The total cross-section is given by 

1 P' 2 -I 2vT l exp {Tc 821-1.::_ (1) (2vT) -I} -1 
cr~+I = -2 nSro2 12 f2 ( 't) [I + ( m~ )2 / 't2] e-2 w~ (p o ) n ----=----=---

T; exp {Tc 321J.:f_ (1) (2vT)-I} -1 · 
( 33) 

As in the discussion of absorptive scattering, we consider three limiting sub-cases of case ( 1). 
I. P=p. cos2 .1}1 =1-a-2, JL~(1)=4p2/(a+1) 2 , 1-'~(1)=0, and,ifweassume 4p262/(a+1)2 

« 2vT /T c• then 

( 34) 
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So in this case a!1 r:::: a!1• This means that around the Bragg maximum of width N-113 there is a diffuse 
maximum of width 1la caused by single-spin-wave inelastic scattering. 

II. p f:. P but p.12 (1)c52 « 2vTITc. Then 
1 -WC _ 2vT fJ-::_(1) 

-T = -7tSr212 p ('t) [ 1 + (m't)2 I 't2] e 2 T(pPB2) 1_ In-- ( 35) 
~+1 2 o Tc fL';_(1) 

m. p.~2 ( 1 )c52 .2: 2vT IT c. In this case the cross-section is given, with an error of order 
exp{- T c [p.~ ( 1) c5 ]2 12 vT} , by the formula 

T = _!_ S 2 2p2 ( ) [ 1 + ( )2 I 2] -2WT 4a sin -1)1 cr+1 2 'It ro 1 't m't 't e (a+ 1)• , (36) 

and is very small when a is large. It is larger, the larger the ratio p2 IP2• 

tive scattering, the maximum cross-section is at p2 IP2 = 1. 
As in the case of absorp-

Now we return to case ( 2). This case is possible if 

't-v~ cv; + 1)-1 <P<'tll~<-v; -1r1, 

which means that p is very close to T. Equation ( 28) then implies that p.:._ < 0. There is thus only 
I 

one outgoing neutron momentum P+ at each scattering angle, and the angle can very from zero to 1!'. 

Also 

!':f. ( 1)-< !'~(cos&)~!'~ ( -1). (37) 

Equation ( 27) implies that p.~2 ( 1) > p2 I a s::J T2 I a, and so the cross-section is small at sufficiently low 
temperatures. When p.'_;( 1)c52 < 1 the cross-section is given approximately by Eq. (36) with sin-ll-1 

replaced by V ~ ( 01 
: 

1 ~)- 1 . 

From Eqs. ( 20) and ( 29) we see that scattering with emission of a spin-wave and scattering with ab­
sorption can occur simultaneously only when 

- - + -- -< 2 cos'¥~- -- --(T 1 p) (T 1 p) 
p a-r p a-r' 

( 38) 

which just defines the range of values of >¥ for which both cross-sections attain their maxima. 

5. SINGLE-8PIN-WAVE SCATTERING IN POLYCRYSTALS 

When Eq. ( 12) is averaged over the possible orientations of q and T and integrated over the direc­
tion of p., we obtain the total cross-section for scattering in a polycrystal with absorption or emission 
of one spin-wave with wave-vector p., 

M'±1 (p, r-) I dQ = { Sr~12P ('t) e-2wT (1 + e;) ~T P; [ n(!') + ~ + ;] fL~ , (39) 

with 

( 40) 

Since q = I p1 - p I, I p - p1 I < q < p + p1, and therefore the inequality ( 40) need be stated only when 

We must in any case have 

Jp-p'l <-:- Jl-, 

-: + f'<P + p'. 

't+r->lp-p'l, 

-:- r-<P + p'. 

The inequalities ( 41c) and ( 41d) fix the limits within which q may vary when p. is given. 

( 41a) 

( 41b) 

( 41c) 

( 41d) 

Consider first the absorptive scattering. We have to satisfy the inequalities ( 41a) - ( 41d) with p 
I 

given by Eq. ( 13). The allowed values of q are plotted in Fig. 1, the boundary cruves being given by 
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FIG. 1. Ranges of variation of q 
for given p and ,_,., for absorptive 
scattering. Po = T /2, p1 = TO! ( 1 -
~ 1 - ( 1/01}), #J.t = T /( ...{(i + 1), #J.2 = 
T/(..fCi -1). In region (1) T- #J. s q 
:S p + p' . In ( 2 ) p' - p :S q :S p' + p. 
In ( 3 ) p' - p :S q :S T + #J., In ( 4) 
T - #J. s q s T + #J.. Outside these re­
gions there is no scattering. 

p 

FIG. 2. Ranges of variation of q for given 
p and ,_,., for scattering with spin-wave emis­
sion. p1 = Ta('/1 + ( 1/a) - 1), Po= T/2, 
P2 = .:;-aT/( .:;-a + 1 ), P3 = T. p, = .:;-aT/( .:;-a - 1), 
#J.o = p/..fCi. In region ( 1) T - #J. s q s p + p'. 
In (2) p - p' s q s p' + p. In ( 3) p - p' 
sq:ST+IJ.. In(4) T-IJ.:Sq:ST+IJ.. 
Outside these regions there is no scatter­
ing. 

_ --r-p+Va..-2 +2a..-p+p2 • ..-+p+V~2a-rp+p2 
!-'-a - - a - 1 ' 1-'-c = Cl - 1 

(±)- ..--p±Va..-2 -2a..-p+p2 p-..-+Va-..---;:.-_-2-;c-a--r-p--:+-p--::2 

1-'-b - cz-1 fla= cz-1 

( 42) 

The range of variation of q is of no interest when #J. is large, since n(IJ.) is then small. Thus the al­
lowed ranges of q when p, ,_,., T are given can for practical purposes be taken as 

1) 't- t-t-< q-< "t + t-t; 2) "t- t-t-< q-< p + p'. 

The differential cross-section is 

( 43a) 

in case ( 1) and 

( 43b) 

in case ( 2). These results are calculated for an unmagnetized crystal, setting ei equal to %. If p ~ 
TO! ( 1--/( 1- ( 1/a)), only case ( 1) can occur, and the total cross-section becomes 

a::_l (p) = { S2 r~ 12p2 (-r) e-2W~ g:~:::s G (T). ( 44) 

When T /2 <: p < aT ( 1 - -J 1 - ( 1/01)), we can compute the correction to Eq. ( 44) produced by the 
range of #J. for which da2dd#J. is given by Eq. ( 43b) rather than by Eq. ( 43a). However, this correc­
tion is of order 1/01 and therefore small when 01 is large. Equation ( 44) can be taken as correct all 
the way down to p = T/2. Further, using the relation p + p' + #J. - T < 21J., we can show that when IJ.d 
< IJ. < IJ.b+), Eq. ( 44) remains valid for all p satisfying #J.d6 « .../ 2vT/T c. When p decreases still fur­
ther the cross-section begins to fall off rapidly. 

Next we discuss the scattering with spin-wave emission. When IJ.6 < 1, so that the relation between 
energy and momentum of a spin-wave is quadratic, the values of q allowed by the inequalities ( 41) are 
plotted in Fig. 2. The boundary curves are 

..-- p ± V p2 + 2cz-rp- a..-2 

t-ti±)= cz+1 

The cross-section is then 

( 45) 
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where ~q is the difference between the maximum and minimum values of q which are allowed for 
given p, j.l.. Again the scatterer is assumed unmagnetized. 

783 

We now consider the total cross-section for scattering with emission of one spin-wave. When p is 
close to T /2, the total cross-section is obviously small. It increases rapidly with p. When p ""' T, the 
part of the total cross-section with spin-wave emission which depends on n ( j.L) becomes equal to the 
absorptive cross-section given by Eq. ( 44). As p increases further, the analytic form of the cross-sec­
tion remains unchanged. The part of the cross-section independent of n(j.L) can be easily evaluated in 
the case when the maximum value of j.L for given p does not exceed 1/il. When p,...., T, this part be­
comes 

( 46) 

As p increases further, the condition ilj.L < 1 ceases to hold. But for sufficiently large p, (when pil 
> [( Til) 2 + a )/2Til), the inequalities ( 41a) - ( 41d) hold for all j.L when the exact dependence of p' on 

j.L is taken into account. The total cross-section for scattering with spin-wave emission then becomes 

( 47) 

From Eq. ( 10) we easily derive the total cross-sections for scattering with absorption or emission of 
one spin-wave, when p is large so that ilp » ..J 2vT/T c• in a magnetized scatterer. We have only to 
multiply Eq. ( 44) or ( 47) by 

8/3 [3- cos2 ~- ('t2 j 4p2) ( 1-3 cos 2 C)]. ( 48) 

We next examine the angular distribution of the scattered neutrons. The maximum intensity will be 
seen in the directions for which the energy of the absorbed or emitted spin-wave is a minimum. In par­
ticular, for p ~ T /2 the majority of neutrons will be scattered backward, while for p > T /2 the maxi­
mum scattered intensity will be at the Bragg angle e0• When p is large ( pil » ..; 2vTa/Tc) so that 
p' ~ p, it is easy to compute the width of the diffuse maximum. In this case T - j.L ~ q ~ T + j.L for scat­
tering either with absorption or with emission. We find 

I · 60 ± M · 60 I 1 v 2vT sm---stn- ~- -. 
2 2 2p8 Tc 

( 49) 

For large p, we can also compute the differential cross-section, 

for scattering with emission or absorption of a spin-wave. In this case 

(50) 

where the plus sign holds for absorption and the minus sign for emission. The limits of variation of q, 
together with Eq. (50), imply 

(51) 

p.<±l (6) = _P_ {I-~/ 1+401:sin~ (sin_!!_ -sin~)}, 
1 .6 V- z 2 2 

czsm 2 

where now the minus sign holds for absorption and the plus for emission. Further, we have 

sin-!<{sin~[I+VI+(OI:sin2 ~") 1
] (53) 

for absorption, and 

. 6>1. 6o[r ~/1 r . 26o) 1] sm 2 2 sm 2 + V -\01:sm 2 (54) 

for emission. In the region close to the Bragg maximum, we are concerned with spin-waves of small j.L, 

and so unity may be neglected in comparison with n(j.L) in Eq. ( 39). If we also neglect in Eq. ( 39) the 
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variation of p' with ,_,., and set q RS T, we obtain 

1 g 2 T 1- exp {- T [fL(±) (6) 8]2 I 2vT} 
dcr~ ( )/dD=-Sr2 2F2(1:)e-2 w~ (I +e2) -~- _v_Jn c 2 

±1 P 8 oT z 't282 Tc 1- exp {- Tc [fLi±) (6) 8]2 I 2v7}' 
(55) 

with ei given by Eq. ( 10). 
The exponentials in E q. ( 55) make the cross -section vanishingly small whenever the condition ( 49) is 

not satisfied. Very close to a Bragg peak, and at not too low a temperature, the cross-section is 

da~(p) 1 S 2 2F2() _2w~(l + 2) g~ 2vT I 2p 
-;m:-=t; 'oT 't e ez (1:8)2 T;; n cx't'j6-60 Jcos(60 ;2). (56) 

In conclusion I wish to thank A. I. Akhiezer for suggesting this investigation, and I. M. Shmushkevich 
and L. E. Gurevich for valuable criticism. 

APPENDIX 

Dyson1•8 has shown that real spin-waves in a ferromagnet, although they have non-orthogonal wave­
functions, correspond to "ideal" spin-waves in a fictitious model with orthogonal wave-functions. The 
probabilities of physical processes calculated for ideal spin-waves are equal to the probabilities of the 
same processes in the real physical system, provided that the temperature is low enough so that the con­
cept of a spin-wave has a meaning. Also Avakiants1 [see Eqs. ( 6) and ( 7)] has given a method of deter­
mining the operators of the ideal spin-wave model which correspond to real physical operators. Apply­
ing this method to the spin operators of atom number l., we obtain 

s~ =- s + 71t 71 1; st = 1/.2s71i; s;- = V2s (I- 2~ 71(711)711• 

where the operators Til. and TJt are connected with the spin-wave absorption and emission operators 
a,_,.. a~ by the relations 

These equations lead directly to Eq. ( 3). 
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