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Selection rules for electromagnetic transitions have been obtained for the following asymptotic 
quantum numbers of deformed nuclei: 0, A, and ~ (the projections of the total, the orbital, 
and the spin angular momentum respectively of a particle on the axis of an elongated nucleus), 
nz (the oscillator quantum number along the axis), and N (the principal oscillator quantum 
number.). Taking into account these selection rules allows an explanation of the discrepancies 
between theoretical and experimental values of transition probabilities. A first order forbid
denness in one of the asymptotic quantum numbers decreases the transition probability by a 
factor 10 -100, 

1. INTRODUCTION 

LET a nuclear state be characterized by the energy Ei, the angular momentum Ii, its projection on an 
axis fixed in space Mi, and the parity '~~"i. It will be able to make a transition to a state with Ef, If, Mf, 
and 'lTf with emission of a ')'-quantum of energy 1iw = Ei - Ef and multipolarity A • The probability of 
such a transition is given1 by 

8n ("A+ 1) 1 ( w )21.+1 
T (rx/..., Ii .-It) = .,_ [(Z"A+i)!!)21i. c B (/...), (1) 

where B (A) is the reduced transition probability 

B(J...)= ~ I'Yjl)]l(rxi,,[L)'Fid'tl2 , ( 1a) 
fJ.,Mf 

and 1)]1 :( CI!A, p.) -the operator of the multipole moment. The a denotes the electric or magnetic char
acter of the transition. 

For a multipole transition to be possible the following selection rules must be fulfilled 

IIi- I, I~ A-< Ii +I,, 

Mt-Mi=fL, 

{
(-1)). for EA, 

"i'"f = (-1)1.+1 .for ML 

(2) 

(2a) 

(3) 

The dependence of the transition probability on the nuclear structure is contained in ( 1) in the matrix 
element of the', multipole operator. One consequently has to use in actual computations a nuclear model of 
one kind or another. Because of its simplicity one usually takes the shell model. The emission of ')'-rays 
is then treated as a single-body process. Utilizing the known expressions for the multipole-moment oper
ators, one can derive formulae1 for the probability of emission of electromagnetic radiation of multipolar
ity A. In the region of validity of the shell model the agreement between experiment and theory is in gen
eral not bad. The ratio between the observed and the calculated transition probability (denoted in the fol
lowing by F) is close to unity. However, in the region of highly deformed nuclei ( 150 < A < 190 and 
222 < A < 256) there is a strong disagreement between the experiment and the values calculated by the 
shell model. This is not unexpected since in this region the unified model of Bohr and Mottelson2•3 applies, 

Nilsson and Mottelson4•5 worked out single particle states in deformed nuclei. They classified the 
states according to the quantum numbers 0, A, ~ (projections of the total angular momentum, the orb
ital angular momentum and the spin of the particle respectively on the elongated nuclear axis) nz, n..l 
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(oscillator quantum numbers along the elongated axis and in a plane perpendicular to it respectively) and 
N (principal oscillator quantum number). 

Alaga et al.8 give an additional selection rule for electromagnetic transitions in deformed nuclei. Let 
K be the projection of the total (collective and internal) angular momentum on the elongated nuclear axis. 
Then 

The degree of K-forbiddenness is characterized by the number v 

v=lki-A 

(4) 

(5) 

The experimental data show that in strongly deformed nuclei K is a "good" quantum number and v 
= 1 decreases the transition probability by a factor of about 100. However, selection rules (2)- ( 4) are 
still insufficient to explain the discrepancies between experiment and theory. It frequently turns out that 
the F-factor for transitions allowed with respect to these selection rules is very small. In this connec
tion it is of interest to investigate se~ection rules with respect to the asymptotic quantum numbers and to 
determine how they are obeyed in deformed nuclei. 

2. ASYMPTOTIC SELECTION RULES 

We consider the case of strong nucleon-nuclear surface coupling. Here the spin-orbit coupling is des
troyed and the projections of the orbital and spin angular momentum on the nuclear axis, A and l:, are 
separately constants of the motion. Furthermore, the oscillations of the nucleon along the nuclear axis 
and perpendicularly to it proceed independently. A natural choice here seems the nz, n.l' A, l:, taking 
as eigenfunctions the functions of an anisotropic harmonic oscillator in cylindrical coordinates. However, 
the particle states in deformed nuclei are commonly characterized by the quantum numbers N, nz, A, 
Q (=A+ l:) and it is therefore necessary to work in this representation. 

We now consider the transition of a single particle from the state Ii, Ki = Qi, 11"i, Ni, nzi• Ai, l:i 
into the state If, Kf = Qf, 'll"f, Nf, nzf• Af, l:f with the emission of electromagnetic radiation of multi
polarity A, k. We assume that the transition is allowed with respect to ( 2) - ( 4) with respect to total 
angular momentum I, its projection K, and parity 1r. We write the operator of the electric multipole 
moment in the form 

l A Z 12 ( 1i )A/2 IDI(H, k) = e + (- 1) AJ. Mwo rJ.YAk• (6) 

Here the contribution of the particle magnetic moment and of the nuclear collective motion has not been 
taken into account. The latter can have a considerable influence on E2 transitions. We write for the 
magnetic multipole moment operator3•4 

( 7) 

Here the contribution due to the collective motion has also been omitted. It can be taken into account for 
M1 transitions by replacing gs and g.£ by gs - gR and g.£ - gR respectively; gR F:l Z/A. 

The selection rules in ( 7) are essentially given by the terms V( rAYAk)S and V( rAYAk)l. Were
write them in the following form 

V (rJ.YJ.k) s = V (2A + 1) j (2A -1) ;J.-1 {- ~ V (A+ k) (A+ k- I) YJ.-1, k-1 (sx + is 11) 

+} V (A -k) (A-k-1) YJ.-I.k+l (s.,- is11) + V>..2 -k2 YJ.-I, ksz}. ( 8) 

A similar expression for V (rAY Ak )1 can be obtained by replacing in ( 8) ( sx ± isy) and Sz by (.f. x 
± ily) and !z respectively. The operator sx + isy in ( 8) corresponds to the transition l:i = - % -
l:f = + %; sx - iSy corresponds to the transition l:i = % - l:f = - %, and Sz, together with the oper
ator for the orbital magnetic moment V( rAYAk).l, corresponds to transitions with l:i = l:f. Utilizing 
the wave functions of an ellipsoidal harmonic oscillator without spin-orbit coupling one can determine 
for which values of N, nz, Q, A, l: the matrix elements of the electric and magnetic multipole mo
ments differ from zero. The results of such a calculation are given in Tables I and IT. The tables are 
arranged identically. The first column gives the difference k = Qf - Qi between final and initial Q. It 
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TABLE I. Selection rules for N, nz, A, l: in 
electric transitions of multipolarity A 

Additional 
t.n- n1 -n1 I I ~~-~A- 1\f -1\i -~,-~i ~N=Nj -Ni I ~nz- I -nzj-nzi Conditions 

±:A ±:A 0 :A,:A-2, ... -:A 0 
±(:A-1} ±(:A-1} 0 :A,:A-2, ... -:A ±1 

±:A 
±:A 

±(:A-1} 
± p, -1) 
±(:A-1) 

0 
0 

0 0 0 ±2 ±2 :1.=2 
0 0 0 0,±2 0 ).=2 

TABLE II. Selection rules for N, nz, A, l: in 
magnetic transitions of multipolarity A 

I IAddi tional 
~n =n -n · .. z zj 2 ' Cond1t1ons 

±:A 0 :A+1. :A-1, ... -:A-1 ±1 
±(:A-1} ±1 :A-1, :A-3, ... -:1.+1 0 
±(:A-1) 0 :A-1, :A-3, ... -:1.+1 0 
±(:A-1) 0 :A+1, :A-1, ... -:A-1 ±2 ).>1 
±(:A-2} ±1 ).-1' ).-3, ... -).+1 ±1 :A>1 

0 0 ±1, ±3 ±1 :1.=2 
±1 =f1 ±1 0 :1.=2 

suffices to consder for a certain 
polarity A transitions with ~D 
=±A, ±(A- 1). An exception is 
quadrupole radiation in transitions 
with Di = Df· In the second and 
third columns the selection rules 
for A and l: are given. They 
have to be considered together 
with ~D. The condition ~D = 
~A+ ~l: has to be fulfilled. We 
note that electric multipole tran
sitions can occur only without 
change of the projection of the 
spin on the nuclear axis (neglect
ing the magnetic moment of the 
particle). Magnetic transitions 
can occur both with and without 
change of the projection of the 
spin on the nuclear axis. The 
fourth and fifth columns give the 
selection rules of N and nz· If 
~z f. 0, the sign of ~nz is re-
stricted to the sign of ~N for the 

largest I~ 1. The smaller I~N I can occur with either sign of ~nz. For example, in an E 1 transition 
with ~D = 0, ~A= 0; the value ~N = + 1 corresponds to ~nz = + 1, and for ~N = -1 only ~nz = -1 
is allowed. Or, in a magnetic transition with ~D = ± (A - 1), ~A= ± (A - 1), we have ~nz = 2 for 
~N =A+ 1, and ~nz = -2 for ~N =-(A+ 1). For the other possible ~N =A- 1, A- 3, ... , -A+ 1, 
~nz = ±2 is allowed. 

It should be emphasized that the obtained selection rules hold only for transitions of the type Df + Di 
> A· In transitions Df + Di :s A the particular case with D = ~ appears. In this state the interaction 
with the surface vanishes and the spin-orbit interaction is not weakened. The quantum numbers nz, A, 
l: here have no meaning. 

3. COMPARISON WITH EXPERIMENT 

We shall now investigate how well the selection rules established in the previous section are obeyed 
in transitions in actual nuclei which have only finite deformations. For this it is necessary to compute 
transition probabilities using wave functions of deformed nuclei and to compare these with correspond
ing transition probabilities in spherical nuclei and with experiment. Such computations were performed 
for transitions in a number of rare-earth and transuranic elements for which there exist data on exper
imental half-lives. '1 The transition probabilities in deformed nuclei were calculated using Nilsson's4 

formulae and wave functions. The transition probabilities for spherical nuclei were computed with for
mulae given by Blatt and Weisskopf. 1 The results are given in Tables Til and IV. Table III gives the re
sults for electric multipole transitions and Table IV for magnetic multipole transitions. The first col
umns of the tables list the elements; the second the transition energy in kev, and the third the spin and 
parity of the initial (top) and final (bottom) state. Only states with I= K = D were considered. Tran
sitions into rotational levels can easily be eliminated by use of the intensity rule given by Alaga et al.6 

The fourth column also gives two sets of data: the upper line has N, nz, A, l: for the initial state and 
the lower for the final state. In the fifth column the character of the transition is indicated. Transitions 
which are allowed with respect to all quantum numbers are uninhibited and denoted by u; transitions 
forbidden because of nz, A. or l: are hindered and denoted by h. In order to facilitate the determin
ation of the character of the transition the table is broken up into parts according to the values of A and 
k. The head of each subdivision lists the changes in the quantum numbers N, nz, A, l: which areal
lowed according to Table TI. The sixth column lists the values of F 1 -the ratios of the theoretical 
transition probabilities in deformed nuclei to similar ones in spherical nuclei. And, finally, the last 
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column shows the ratios of the experimentalT,B to the theoretical transition probabilities in deformed nu
clei, F2• The ratio of the experimental transition probability to the transition probability in spherical 
nuclei (the F -factor ) is equal to the product F 1 F 2• 

From Tables III and IV it is first evident that the quantum numbers nz, A, and !: play a significant 
part in real nuclei. If the transition is uninhibited the unified model and the shell model lead to similar 

TABLE III. Electric multipole transitions (Er.) 

I Tran-

I 

I 

I 
sit ion ni ni N i nzi.\i Ei ITran- rdef 

I 
Texp 

Element of Trf Nf TlzfAj Sf 
sit ion F1 =-- F, ~,,fer energy I character! Tsph 

kev I 

A= 1; L'IO = 0; liN= ±1; llnz = ±1; liA = 0; t:."£=0 

Eu~33 97.3 "12- 5 32+112 h 0,38-10-4 
5/2+ 413-112 

Np~F 60 "I·- 52 3-1;. h 0. 70-10-• 0.13 
"12+ 6 4 2+112 

Pu~9 106.2 "12- 50 3-112 h 1.1-10-6 0.5 •;.+ 6 22+112 I 
A= 1; t:.0=-1; t:.N= ±1; t:.nz = 0, t:.A=-1; t:."i. = 0 

51 4+112 
I 

Lu!,F 146 91.- h 

I 
0.40-10-4 0. 7 ·10-2 

'I•+ 4 0 4-1,'2 

A=2; t:.0=1; t:.N=O; t:.nz = ±1; t:.A = 1; [:,2. = 0 

TaW 482 •i·+ 4 0 2+112 h 

I 
0. 60 ·10-4 

'I•+ 4 0 4-1/2 

A=2; t:.0=2; t:.N=O; llnz = 0; liA = 2; ll"i. = 0 

I 
1J.+ 4 11-112 TaW 133 "I•+ 4 0 2+112 

h 1.8-10-3 0.99 

Eu~~3 172 11.+ 4 11-112 u 0.16 
•;.+ 4 1 3-112 

A=3; liO = 3; liN= ±1; llnz = 0; t:.A=3; ll"i. = 0 

Dy~~5 108 11·- 5 21-112 h 0.85 .f0-3 0,60• 'I•+ 6 3 3+112 

Er~f 208 112- 5 21-112 h 0.80-10-3 2.7* 'I•+ 6 3 3+112 

• Computed by Iu. I. Kharitonov 

results (F"" 1 ). But if the transition is hindered then the unified model gives smaller transition prob
abilities than the shell model. The size of the decrease depends on the degree of forbiddenness. One 
sees from the given data that a first-order violation of the selection rules for one of the asymptotic quan
tum numbers decreases the transition probability by a factor 10-100, This allows an explanation of the 
disagreement between the experimental transition probabilities and the shell model (compare F 2 and 
F 1F2 ). Unfortunately only little experimental data exists. However, even the presently-available data 
clearly indicate the usefulness of the unified model as can be seen from the last column of the tables. 
The unified model describes the experimental data much better than the shell model. 

The case Irn1 is of particular interest. This nucleus is on the boundary of the region of large defor
mations and the question of its equilibrium shape is presently open. An M1 transition of 82.6 kev was 
considered, with the deformation parameter taken as 0.14. The obtained result (Table IV) shows that 
the assumption of a deformed nucleus leads to a considerable improvement. 

In conclusion we remark that the simple physical model of a single particle moving in a deformed har
monic oscillator potential on which this calculation is based gives a fundamentally correct description 
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TABLE IV. Magnetic multipole transitions (MA.) 

Tran- Tran-
sit ion Oini Ni nzi Ai L.i sit ion T de£ 

Element energy, Df'f NfnzfA!I;f charac- F,--
'sph 

kev ter 

"A= 1; . t:.n =1; t:.N=O; _0. 
L':.A-1, 

Eu~~3 69 1!.+ 411-1;. 
u 0.72 

•;2+ 411+'1• 

Eu~~3 103 •;2+ 411+1/2 h 1.2-10-• 
s;.+ 413-1/2 

TaW 482 s;.+ 402+'1• h 1, 4 -10-S ?I·+ 4 0 4-1 /2 

IrW 82.6 'I•+ 400+1!2 h 0.56-10-S 
•;2+ 4 0 2-1;. 

"A=2 t:.l.1=-1; t:.N=-1; L':.nz=-1; L':.A=O; 

LuW 146 

I 
•;.-

I 
514+1 /2 u 0.1 

7 !.+ 404-'/• 

Texp 
F,--

rdef 

1 
t:.2. = 0 

0.09 

13 

0.87-10-2 

1.8 

t:.2. = -1 

of the laws of the electromagnetic transitions in deformed nuclei. This is a rather remarkable fact. 
I am deeply grateful to S. V. Ismailov and L.A. Sliv for their guidance in the course of this work and 

to Iu. I. Kharitonov and L. K. Peker for their discussions concerning the results of the calculations. 
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