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An expression is obtained for the number of electron-hole pairs generated in a semiconduc
tor by a uniform electric field. The derivation is made for an arbitrary crystal. The result 
differs from the usually-employed formula in that it contains an explicit angular dependence 
and a slightly different dependence on the field. A particularly essential fact is that in the 
absence of electron-phonon collisions and collisions between electrons themselves the mag
nitude of the effective potential barrier is determined not by the width of the forbidden band, 
but by the lower edge of optical absorption (the internal photoeffect ), which, as a rule, is 
considerably greater. This circumstance should lead to an essential increase in the critical 
fields. 

THE presence of a strong electrical field ( E ,..., 105 v /em), as is known, produces in semiconductors 
additional carriers, the number of which increases sharply with increasing field. The most probable 
mechanisms causing this fact are, first, shock ionization and second, direct knocking out of valence elec
trons by the field in the conduction band. This latter mechanism, analogous in a certain sense to cold 
electron emission from a metal surface, was first considered by Zener1 in the quasi-classical approxi
mation, which is natural for such a problem. The best expressions obtainable by this method for the 
number of electrons n passing into the conduction band per unit volume per unit time, is given appar
ently in the work by McAfee et al.2 and has the form 

_ eEd { "' v-· %\. n - N Z1t1i. exp - Ze'hE 2m !l J , ( 1) 

where N is the number of valence electrons per unit volume, d the crystal lattice period, m* the ef
fective mass of the electron, fl. the width of the forbidden zone, and e the electron charge. 

This formula is somewhat indefinite, since the values of the effective mass of the electron in the va
lence band and in the conduction band are in general different and it is not clear exactly which value is 
contained in the exponent. In addition, expression ( 1) was obtained by solving the unidimensional prob
lem. As will be shown below, the correct allowance for the three-dimensionality leads to certain quite 
substantial qualitative changes. Finally, a particularly important point, no account is taken in the deri
vation of Eq. ( 1) of the scattering of electrons by thermal lattice vibrations, which, as will be shown 
below, is of decisive significance for this problem. 

We shall calculate in this work the probability of the passage of a valence electron into the conduction 
band by a method already used for this purpose by Houston3 and representing essentially a method com
monly used in perturbation theory to calculate the transition probability per unit time. The entire anal
ysis will be carried out in the so-called single-electron approximation, i.e., the interaction between elec
trons will be disregarded, with the exception of that portion of the interaction included in the general 
self-consistent field of the crystal. 

The Hamiltonian of the system has in this case the following form: 

fl =Hoe+ HoL + HeL + eEr; (2) 

Hoe= 2~ ( ~ vy + w (r); if oeiJ!oJ (p, r) = Sj (p) IJ!oJ (p, r); (3) 

' 1 ~ + + H oL = 2 2.; 1iwk (bk bk + bkbk ); 
lkl<km 

( 4) 
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HeL = i v JN ~ oc(k) {bite-ikr -bkeikr}. (5) 
lkl<km 

In these formulas r is the electron radius vector, W (r) is the periodic potential of the crystal, p 
and k aretheelectronquasi-momentumandthephonon wave vector, Wit and Ej (p) are functions that 
determine the dependence of the phonon frequency on the wave vector and of the electron energy on the 
quasi -momentum in the band with index j, bit and bt are the creation and annihilation operators of a 
phonon with wave vector k, V is the normalizing volume, v the number of valence bands, and finally 
t/loj (p, r) the electron wave function in the following Bloch form 

hi (p, r) = exp (ipr I h) u1 (p, r), 

where Uj (p, r) is the periodic solution of the equation 

-! V2u 1 (p, r)- ~ pVu1 (p, r) + { W (r) + ;~- e1 (p)} u1 (p, r) = 0. 

(6) 

(7) 

The interaction Hamiltonian ( 5) should generally speaking also contain functions of the Bloch type in
stead of the plane waves. However, in the calculation of the matrix elements for transitions between 
states (6) allowance for this circumstance gives only a corrective factor on the order of unity, which is 
insignificant, since we do not specify the form of W (r) anyhow, nor do we consequently specify t/loj (p, r ). 

No assumptions whatever' are made concerning the form of the function a (k), with the exception of 
the obvious property a (k) ,..., k1f2 for small k. 

It is well known that the presence of a homogeneous electric field E leads to a uniform increase in the 
quasi-momentum of the electron with time in accordance with the law p =Po - eEt. In other words, if at 
the instant t = 0 the electron is described by a wave function t/loj (p0, r) then in subsequent instants its 
wave function will have in the zeroth approximation the form 

t 

lj>/ (Po• r, t) = exp {- ~ ~ et{p0 - eEx) dx} lj>01 (Po- eEt, r). (8) 
0 

By virtue the periodic dependence (with the period of the reciprocal lattice) of Ej (p) and t/loj (p, r) on 
the quasi-momentum p, a uniform increase in the latter means that the electron vibrates within the con
fines of a single band, if the field is directed along one of the principal crystallographic axes (with a per
iod 2711i/eEd for the case of a simple cubic lattice). If the field is not aligned with any of the reciprocal
lattice vectors, the motion can have a complex aperiodic character, but is still confined to the same band. 
The exact wave function should, naturally, contain also terms connected with the transitions into other 
bands, but these terms will obviously be small. It is therefore natural to seek a solution of the Schrodinger 
equation 

itt a'¥ 1 at = H'¥ ( 9) 

in the form of a superposition of products of functions of the form (8) (which already include the funda
mental effect of the field- uniform acceleration) and of the phonon wave functions 

t 

'¥= ~ CJ([Nk], Po• t)exp{eE ~rdPo-eEx)dx} h(p0 , r, t)Il(bit)Nk<D0 • 

h~ 0 k 

( 10) 

[Nkl 

The symbol [Nk) denotes the set of occupation numbers Nk corresponding to all possible values of k; 
~o is the wave function of the lowest energy state of the lattice; summation over Po is carried out over 
all physically-different states, i.e., over the volume of the first Brillouin zone 

'l'1 (p) =· ~ u; (p, r) gradpu1 (p, r) d-r:. ( 11) 
n, 

The integral in ( 11) is taken over the volume of the elementary cell. The quantity ( 11) is pure imaginary, 
since by virtue of the condition 

~ u; (p, r) u1 (p, r) d-r: = I we have ){e r 1 (p) = 0. 
n, 
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The advisability of separating out the exponential factor in ( 10) will be seen from the following. Substitut
ing this expansion into (9), we obtain in the usual manner a system of equations for the coefficients: 

where 

X {MJJ' (Po- eEt, nk') Vi\T;,- cr ([Nk]- lk:;, Po+ nk', t) Qt, (p0 , k', t) 

-Mil' (Po- eEt, -nk') Y Nk' + 1 CJ' ([Nk] + lk'• Po ·--nk', t) Qjj, (Po• k', t)}, 

t 

Qyjt{p, k, t)= exp{{ ~[e1 (p-eEx)-e1.(p-eEx+nk)+nwk]dx 
0 

t 

- eE ~ lr 1 (p- eEx)- r i' (p- eEx + nk)J dx}, Q~1 , (p, t) = QtJ. (p, 0, t). 
0 

In the derivation of ( 12) use is made of the identity 

JiJ' (p) / e {s, (p)- ei' (p)} = ~ u; (p, r) gradpui' (p, r) d-e. 
n, 

(12) 

The diagonal term in the first sum over j' drops out virtue of the presence of an exponential factor 
in the expansion ( 10). The symbols [ Nk ] ± 1k' denote that in the set of numbers [Nk] the quantity 
Nk' is replaced by Nk' ± 1, and all the remaining quantities remain the same. 

To obtain an expression analogous to ( 1) we must discard from the system of equations ( 12) those 
terms containing collisions between electrons and phonons. Taking it into account that at t = 0 

CJ (p, 0) = OJV 

(the indices V and c are necessary in what follows to denote quantities pertaining to the valence and 
conduction bands respectively), introducing by way of a new variable the vector p =Po - eEt, and 
resolving this vector into a component Pll parallel to the field and a vector P.!. perpendicular to the 
field, we obtain 

Po n -eEl P u , 

( t) \ EJvc(P) {· ( ( ') ( ') dpu 
Cc Po• = .) ec(P)-ev (p) exp t .) [sc p - sv p ] e1t£ 

Po n Po u 

( 13) 

Here n is a unit vector in the direction of the field. 
For simplicity and clarity let us first calculate the integral ( 13) for the simplest case, when the field 

is directed along one of the principal crystalline axes of a simple cubic lattice with a period d, and then 
generalize the results to include the case of a lattice of any symmetry and an arbitrarily oriented field. 

In this particular case, as indicated above, the motion of the electron in the band is periodic with a 
period 27tli/eEd. A natural characteristic of the infiltration is therefore the probability of passing through 
the conduction band during one period 

"nt nJvc(P) {· P\11 ec(P')-ev(P')d' +P\n 
Do(P_d= I ~ e[~c(P)-ev(P)] exp t .) e1tE Pu .) nrvc(p')dp'u}dPu r 

-n1t/d Po u Po n 
( 14) 

At a fixed value of p .l the functions Ec (p) and E y(p) are different branches of the same infinitely
valued analytic function E (p) of complex variable p 11 , since they represent different roots of the same 
eigenvalue problem. Since these functions are close to each other on the real axis, there should be lo
cated somewhere near the real axis in the complex plane a branch point Pll = q, in which 

ec(q) = cv(q). 
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Obviously, q depends on Pl.· In the vicinity of the point q the branching is into two bands and Ec( Pn) 
- Ey(PJI) ,..., .Jpu - q. The possibility of branching into a larger number of bands,* as well as the multi
plicity of the inverse function Pu (E) in the vicinity of the point q (which corresponds to Ec ( Pll) -
Ey(PJO,..., (Pfl - q)(2n+t)/2) would appear only accidently, under particular selection of the potential 
W ( r), and will therefore not be considered below. 

By using the general properties of solutions of second-order differential equations it is possible to show 
(see Supplement) that in the vicinity of the point q the quantity n'Yvc ( Pll) behaves as (PI - q)-112 and 
the factor ahead of the exponent in ( 14) has at the same point a simple pole with a universal value of the 
residue i/4. The latter circumstance makes it possible to calculate the integral in Eq. ( 14). For this 
purpose we introduce into ( 14) a new variable y = y ( Pll ) , satisfying the following conditions: ( 1) 
dy ( Pll )/dpll is real and positive for all real p 11 and has the same period as the reciprocal lattice; ( 2) 
dy( PI! )/dpn behaves in the vicinity of the point p 11 = q as ( Pll - qf112 and has neither zeros nor sing
ularities lying closer to the real axis than q. 

It is easy to check that the integrand in ( 14) is single-valued in the vicinity of the point y = y( q) and 
has at this point a pole with residue i/2. An example of such a function is the integral 

Shifting the contour of integration in ( 14) to the upper half of the y plane, we obtain 

\ {C[· ec(P)-ev (p) ] }\
2 

Do (p..L) = ~t2 exp ~ t e1iE + "Tvc (p) dpU ( 15) 

with accuracy to terms that are exponentially small compared with fundamental term. Equation ( 15) dis
cards, in addition, terms connected with the limits of integration, and therefore not increasing with time.t 

The probability of passage after I. periods is, 

Dz (p..L) =Do (p..L) I ~ eirs,\2 = sin2 [(I+ 1) so I 2) D ( ) 
...... sin2 (s0 I 2) o P ..L ' 
r-o 

where 

>t'/L/d 

SO (p ..l) = ~ {i Ec (p) ;;;:;v (p) + Df Vc (p)} dp U 
-1t1i./d 

i.s a rapidly oscillating function of the field ( s 0 ,..., 1/E). 
However, taking it into account that s 0 is a function of P..L and averaging over the narrow region 

~Pl.• we obtain 

( 16) 

Equations ( 14) -( 16) were obtained, as already remarked, for a field directed along one of the prin
cipal crystallographic axes of a simple cub1c lattice, when the motion of the electron has a simple peri-

*A distinction must be made between the branching of E(Plr) for fixed Pl.• considered here, and the 
frequently-encountered band degeneracy by virtue of the crystal symmetry. In the latter case the equiva
lent states belonging to the various zones correspond to different directions of the quasi-momentum, i.e., 
to different Pl.. 

t A formula analogous to ( 14) was also used by Franz.4 However, he did not take into account there
after the presence of a pole in the integrand, and as a result his final results differed strongly from ( 15) 
and the equations that follow. These include the value of the factor ahead of the exponent at the point q, 
which as shown above, is infinite. If this factor is nevertheless replaced by the most sensible value 
,..., d/2rli, the resultant values are several orders of magnitude smaller than ( 15 ), and contain a factor 
ahead of the exponent that is dependent on E (,..., E413). 
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odic character. In general, however, these cannot be used, since the motion is generally speaking aperi
odic and the probability of infiltration changes from period to period. But this circumstance, which is 
significant in the calculation of the probability of passage of each electron, does not play any role for the 
total effect when the valence electrons fully fill the band, since the place of the departing electron is 
taken during the next period by another electron, which will infiltrate with the same probability. Still 
another difference lies in the fact that the time interval, to which formula ( 15) pertains, is no longer 
equal to 2711i/eEd, but is determined by the length, divided by eE, of the segment of the straight line 
lying within the first Brillouin zone parallel to the field and passing through point Po• viz.: T (Po) = 
~p 11 (Po) /eE. But even this fact is of nd significance for the summary effect, because all the electrons 
having initial states along this segment have an equal probability of passage, and their number is propor
tional to ~P n (Po) /2711i. The number of electrons passing in the conduction band per unit time is propor
tional to ~PII (Po)/T (p0 )27Tfi = eE/2711i and is independent of ~PII• i.e., of the form of the Brillouin band. 
The equations that will be obtained below are therefore valid for lattices of all symmetries and for all 
field orientations. 

The total number of electrons passing in the conduction band per unit time and per unit volume is 
given by the expression 

( 17) 

The principal contribution to the integral ( 17) is made by the narrow region near that value of P1.• 
which corresponds to the minimum of the function Ec (p) - €y(p). Actually, for all specified values of 
Pl. this function reaches a certain relative minimum €min (Pl.) as p 11 is varied. The greater Emin(PJ.), 
the farther ~s the branch point q ( P1.) from the real axis. At values of €min (Pl.) that are not too large, 
q (pl.) ,.., E!-h~n ( P1.). The exponent therefore contains a large negative quantity, proportional to E~k ( P.l) 
and consequently, the integrand has a sharp maximum in the region where the function Ec ( p) - Ey \ p) 
has an absolute minimum. 

In the vicinity of this point we cannot restrict ourselves to an ordinary quadratic expansion, and must 
use a somewhat more accurate expression, taking into account the presence of a branch-point surface. 

( 18) 

On the other hand, the quantity 

q(p J_) 

~ 0 Yvc(p)dpll 
0 

can be considered constant within this region with a sufficient degree of accuracy, -in'YoVc .$ 1. 
Elementary integration leads then to the following final result: 

n = 27tv (;!_y (m~;;m• ~oaf exp{- 2e~£ V m0sci•+ "Yovc}, 
II 

( 19) 

where mjj1 = L [ ( cos2 'Yi) /mi ], mf1 are the principal values of the tensor mi~ [see ( 18 )], and 'Yi 
i 

are the angles between the directions of the field and the principal axes of this tensor, which in general 
do not coincide with the principal crystal axes. 

This formula can be presented in a clearer form if one introduces the "average lattice period" d 
using the equation d3 = !J0 = v/N, where !J0 is the volume of the elementary cell. Then 

n = N ~ eEd (m1m2m3 )''' eEd ex {- _TC_ 'Vme'l• + 0 } 
2 27t"li m~l (7t"li I d) (eo I m 0 )'/• p 2e1iE I 0 r ovc . (20) 

This expression differs from ( 1) in that the factor in front of the exponent is dependent on the field. 
The exponential term contains an explicit angular dependence, which can appear also in crystals of cubic 
symmetry in the presence of degeneracy of the valence band or of the conduction band. 
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A more substantial difference lies, however, in the meaning that must be ascribed to the quantities Eo 
and m11. As can be seen from the above derivation, Eo is the width of the forbidden band and mik is the 
effective mass of the electron (more accurately, the reduced effective mass of the electron and hole) only 
in that case when the highest states of the valence band and the lowest state of the conduction band correspond 
to the same value of the quasi-momentum. In practice this never happens, and consequently E0, coincid
ing with the red boundary of light absorption for a given crystal, is always substantially greater than the 
width of the forbidden band. By virtue of this, the values of the critical fields, corresponding to a notice
able infiltration, should be considerably greater than those usually expected on the basis of Eq. ( 1). 

If, however, there exists some interaction that changes the quasi-momentum of the electron, a transi
tion is possible from the highest state of the valence band to the lowest state of the conduction band. 

Such interactions may be collisions between electrons and electrons or between electrons and phonons 
or impurity atoms. The field dependence of the probability of an infiltration involving these processes is 
given by the same exponential factor as in ( 19), except that the width of the forbidden band enters in place 
of Eo. In view of the very strong dependence of ( 19) on E0, the role of these processes can turn out to 
be decisive. 

Let us note also that while formula (17) is quite rigorous, formulas (19) and (20) are obtained under 
the assumption that Eo is small compared with the widths of the valence and the conduction bands, and 
therefore expansion ( 18) is valid everywhere within the confines of the forbidden band. For the opposite 
case, corresponding to the appproximation of strongly bound electrons, it is also possible to obtain a rela
tively simple expression. In this approximation, as is known,5 it is possible to retain only the first terms 
in the Fourier expansion 

ec (p)- ev (p) = ! 0 [I+ ~ocgeipg/1;], 
g 

where g are the vectors of the crystal lattice. In this case Io ~ Eo ~ D. and ag « 1. Then 

n ~ N ;;: e~d exp{- e~~ [q0 - ~a:: (exP{iPm -;_-qon g }- exr{/~g})]}, 
g 

where ~ is determined by 

(21) 

(22) 

It is easy to verify that the fundamental term in the exponent is always of the order - (10/eEd) ln ( 1/ a), 
where a is the ratio of the widths of the allowable and forbidden bands and consequently, the transmis
sion coefficient diminishes somewhat slower with increasing Eo than called for formula ( 19 ). In this ap
proximation, the exponential factor ( 22 ) is close to that obtained by Feuer6 for the unidimensional case. 

It must be emphasized that the entire above analysis of the problem of production of electron-hole pairs 
by the electric field starts out with the far-reaching assumptions on which the band theory of solids is 
based, It is assumed, in particular, that both the electron states (states of the conduction band) and hole 
states (valence band) can be obtained by solving a certain single-electron problem with a specified per
iodic potential, and that the electrons and holes created do not interact with each other. As pointed to 
the author by L. D. Landau, it would be logical to consider the electrons and holes as two different 
branches of the excitation spectrum of the crystal, without making any further detailed assumption con
cerning their nature, and also to take it into account that they are created not free, but interact with each 
other in accordance with the Coulomb law, which may lead to certain changes in the factor in front of the 
exponent in ( 19 ). 

It can be shown that such an analysis will lead in practice to the above results if the Coulomb inter
action between the electron and hole are disregarded. There are grounds for hoping that allowance for 
the latter does not change strongly the final derivations, since the value of the Born parameter e2/J.Liiv 
(where J.L is the dielectric constant and v the relative velocity of the electron and hole), a parameter 
characteristic of this problem, is of the same order of magnitude as the square root of the ratio of the 
electron and hole bound-state energy to the width of the forbidden band, and is always small. 

In conclusion I thank Professor V. L. Ginzburg and Academician L. D. Landau who made many valu
able comments when evaluating the results of this work. 
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SUPPLEMENT 

Let us investigate the behavior of the function 

lev (p) / e [ec (p)- ev (p)] = ~ u; (p, r) grad~uv (p, r) d,. 
n, 
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( 18) 

in the complex plane. For simplicity all further arguments will concern the unidimensional case. Equa
tion ( 18 ), which takes place on the real axis, cannot be extended to the entire complex plane, since its 
right half contains an essentially non-analytic operation, complex conjugation. We can, however, use the 
circumstance that on the real axis uj (p, x) = uj (- p, x) and rewrite ( 18) as 

Jcv (p) r auv (p. x) 
e [€c (p)- EV (p)j - ~ Uc (- p, X) ap dX. 

n, 

( 1' s) 

In such a form it is possible to continue this equation analytically into the region of complex values of 
p. Analogously, an analytic continuation of the orthogonality and normalization conditions of the functions 
Uj (p, x) in the p plane leads to the equation 

~ ui(-p, x)ur(P, x)dx=oii'· (28) 
n, 

To investigate the properties of ( 1' S) in the vicinity of the energy branch point q it is advisable to 
change to a new independent (generally speaking, complex) variable, the energy E. Corresponding to 
each value of € are two values of p of opposite sign, and consequently two functions uj (± p( €), x) 
= uj( €, x). The function p( €) is regular in the vicinity of the point q. The index indicating the num
ber of the zone can be omitted hereinafter, since the states of the different zones correspond to different 
energies. On the other hand, at the point where the energies of both zones coincide, i.e., at the branch 
point, the functions u~( €, x) and ut( €, x) tend to values that differ only by a factor that is independ
ent of x. Actually, were this not so, the initial Schrodinger equation would have at this energy value four 
linearly-independent solutions, an impossibility for a second-order equation. 

If we detour the branch point Eq in the € plane, then by virtue of the uniqueness of the solution of 
the differential equation with the given boundary condition (i.e., with p specified), we should obtain a 
function that differs from the original one only by a multiplying factor (which in general depends on E). 
Consequently, u± ( E, x) can be represented in the form c± ( €) v± ( €, x) where the ~ ( €, x) are unique 
functions of € in the vicinity of the point Eq· Furthermore, they can be considered regular at this point, 
for if they had, for example, a pole of the roth order, the factor ( €- Eq)-m could be taken out and in
cluded in c±( €). 

Let us denote by Et and E2 the two values of energy, corresponding to the same value of the quasi
momentum. As p approaches q, both these quantities tend to Eq, and then, to accuracy within terms 
of higher order, we have € 2 - Eq = Eq- € 1• Then 

( 38) 

Let us insert this expansion into the normalization condition for v± ( €2, x) and take account at the same 
time of the orthogonality of v+ ( €2, x) and v- ( € 1, x) 

1 = c+ (e2) c- (e2) ~ v- (e2, x) v+ (s2, x) dx = c+ (e2) c- (e2) 2 (eq- el) ~ v- (s2, x) av+ ~:" x) dx + . . .. ( 4S) 
~ ~ 

Let us now compare the right half of ( 4S) with the quantity of interest to us 

(58) 

As a result we obtain the relation 

(68) 
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It is obviously always possible to choose the functions so as to obtain on the real axis c+ ( E) = C- ( E). 
Then this equality is always retained, and in the vicinity of the branch point it follows from this equality 
that c+ (E) = c- (E) ,... ( E - Eq)-1/2 and, consequently 

. C+(ev) . 
llm-C+() =+l. 
p~q ec 

At first glance it may appear that this deduction is not unique, since c± ( E) are determined on the 
real axis with an accuracy to within an arbitrary phase factor. However, strictly speaking, we are in
terested not in the quantity ( 1S ), but in its products by the factor 

p 

exp H lvc (p') dp'}, 
0 

which is contained in the intergrand of ( 14) and which, as can be readily verified from the definition of 
Yv c ( p), is in general independent of this phase factor. 

We thus have near the branch point 

\ auv (p, x) i 
J Uc(- p, x) ap dx = + 4 (p-q) + · · .. 

o, . 
( 7S) 

From the definition of the quantity 'YVc ( p) it is seen that the expansion in powers of E - Eq contains 
no even terms, and therefore the expansion begins with the term ( E - Eq) -t ...., ( p - q) - 1/ 2 • 
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