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A thermodynamic investigation of the phenomena associated with a phase transition of the 
second order in liquid mixtures is carried out. The results obtained are compared with the 
experimental data on liquid-vapor equilibrium in the He3 - He4 system. 

IN pure He4, as is well-known, the He I -He II transition is a phase transition of the second order. The 
question of the nature of this transition in mixtures of the helium isotopes has been repeatedly submitted 
to theoretical investigation, as a result of which, in particular, it has been predicted1 that the 71. -transition 
in such mixtures will be a transition of the first order for sufficiently small concentrations and high 
temperatures. 

Inasmuch as this problem is of fundamental significance, it appears desirable to carry out a detailed 
thermodynamic investigation of the phenomena associated with the He I -He I I transition in helium isotope 
mixtures, and to compare the results thus obtained with the experimental data (cf. also references 2, 3). 

It is necessary first of all to note that a conclusion regarding the nature of the He I- He I I phase tran
sition in helium isotope mixtures can be drawn from a study of the dependence of the vapor pressures of 
these mixtures upon their He3 content. In the case of a first order phase transition, in fact, there should 
be observed a separation of the liquid phase into two mixtures of differing He3 content, which would yield 
vapor pressures independent. of the concentration of the light isotope in the region of separation. 

Carefully-conducted experiments4-8, however, have shown that in the interval 1.35- 3.0°K there is a 
marked dependence of the vapor pressure upon the He3 content of the liquid phase, indicating that the 
hypothesis concerning the occurrence of a first order phase transition in this temperature interval is not 
borne out. 

Thus, as in the case of pure He4, the He I- He II phase transition in helium isotope mixtures within 
the temperature range investigated is a phase transition of the second order.* 

Inasmuch as this is the only instance of the occurrence of a second order phase transition in liquid 

*It must be noted that Walters and Fairbank7 have recently observed a separation of helium isotope 
mixtures into two phases below 0,8°K. 
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mixtures, the opportunity provided for investigating the special features arising therefrom is extremely 
interesting. In particular, it is possible on purely thermodynamic grounds to draw conclusions concern
ing the special features appearing on the P- T curves at the transition through the ll.-point, and con
cerning the behavior of the heats of mixing and vaporization at the transition through the same temperature. 

Use of the experimental data. which have been obtained4-s relative to liquid-vapor equilibrium in the 
He3 - He4 system makes possible a direct comparison of the theoretical results with experiment. 

1. FEATURES OF THE: LIQUID-VAPOR DIAGRAM IN THE VICINITY OF THE li.-POINT 

Let us represent the thermodynamic potential for a mixture in the form <I> = Ncp, where cp is the 
thermodynamic potential per particle and N = N3 + N4 is the total number of particles. Representing the 
concentration of the mixture by XL= N3/N, we find the chemical potentials IJ.~ and IJ.If of the com
ponents in the mixture: 

(1) 

Using the condition of equilibrium between the phases and the expressions for the chemical potentials 
of the constituents in the gaseous phase, we obtain, assuming ideality for the vapor: 

kT In P3 + Xa (T) = <p + ( 1 - xd a<pjaxL, kT In P 4 + X• (T) = <p- XL a<pjaxL, 

where P 3 and P4 are the partial pressures. 
Taking the total derivative with respect to temperature on both sides of Eqs. (2), we arrive at the 

expressions: 

(2) 

(3) 

where S3 and S4 are the partial entropies per particle. At the temperature Tll., inasmuch as at a 
phase transition of the second order the first derivative of the thermodynamic potential suffers a break 
in slope, and the second derivative a discontinuity, we obtain: 

where 

From (2) and ( 4) it follows immediately that in this case at Tll, there should be observed breaks in 
the P 3 - T and P 4 - T curves,, and discontinu.ities in the dP3/ dT - T and dP 4/dT - T curves. 

Taking into account the fact that near the transition point8 

(4) 

(5) 

where cpll and (/JI are the values of the thermodynamic potential below and above the ll.-point, respec
tively, and D.Cp is the discontinuity in the specific heat at Tll., we obtain 

(6) 

and, in place of (4) 

(7) 

Using (7), it is possible to find a relation between the discontinuities in the derivatives of the partial 
pressures 

(8) 
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Setting 

P3 =XyP; P,=(l-xy)P, (9) 

where xv is the concentration of He3 in the vapor, we obtain from (7) an expression for the discontinuity 
in the derivative of the total pressure with respect to temperature 

dlnP I:J.Cp oTJ. 
kTI\b. -----cJT = (Xy- xd r;: oxL. 

(10) 

Since ElT?I./ElxL < 0,3 ~Cp > 0,8 and xv > xv ~(d ln P/dT) < 0, which is found to be in agreement with 
experiment. 3 

Thus at a second order phase transition in mixtures the derivatiiVes with respect to temperature of the 
partial and total pressures suffer discontinuities. It should be remarked, however, that magnitude of the 
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FIG. 1. Dependence of the dif
ference between the mixture and 
He4 vapor pressures (~P) upon 
temperature: (1) 8.3% He3; (2) 11.1% 
He3; (3) 13.4% He3; (4) 16.7% He3• 

where 

discontinuity in the derivative of the total pressure is small, as 
is evident from (10); this is a consequence of the fact that the 
discontinuities in the derivatives of the partial pressures have 
opposite signs and the same order of magnitude [ cf. Eqs. ( 4) and 
(8) ]. As a result of this and also of the large value of dP/dT, the 
comparatively small discontinuity in this quantity at the ?I.-point 
will be scarcely discernible. 

The dependence of ~p upon T, where ~P is the difference 
between the vapor pressures of the mixture and of pure He4, has 
been investigated experimentally, and in this case breaks at T?l. 
are clearly visible. This is explained by the fact that the mag
nitude of d(~P)/dT has now been considerably reduced, while 
the magnitude of the discontinuity has remained the same. The 
dependence of ~P upon T3•6 is represented in Fig. 1 for mix
tures of varying He3 content. On each curve a break is visible at 
T?l.. This confirms the conclusions we have drawn regarding the 
characteristics of the P- T curves, and provides a new possi
bility for determination of the displacement of T?l. with increas
ing He3 concentration in the mixture.3 

It is e.ssential to note that at the ?I.-point a discontinuity should 
be observed in the first derivative with respect to temperature of 
the He3 concentration in the gaseous phase (xy). Specifically, 
substituting the values for P 3 and P 4 from (9) into (3), we 
readily find 

axv 6Cp arA 
!:!..-= x (1-xy)-- · 

ar V kT~ axL' (11) 

a ( cv) 6Cp arA b.- In -- - -- -
aT cL - kT~ axL' (12) 

Thus there follows from Eq. (11) the presence of a discontinuity in the derivative of xv with respect to 
temperature, and from Eq. (12), the existence of a discontinuity in the derivative of the distribution coeffi
cient with respect to temperature.* 

The occurrence of breaks in the P- T and xv- T curves at T?l. should lead to breaks in the two 
curves of the liquid-vapor equilibrium diagram. It should, however, be noted that these breaks do not 
appear in the published diagram, 6 as a consequence of the fact that the variation in these quantities at the 
?I.-point is small, and also because the function xy(T) was determined, not directly, but from the diagram. 

The magnitude of the discontinuity in the derivative of the total pressure with respect to xL at the 

*This expression was obtained by us in 1950.2 More recently it has been obtained by de Boer and 
Gorter.9 
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transition temperature is 

(13) 

It is evident from (13) that the discontinuity in the derivative of the pressure with respect to the concentra
tion of the liquid phase is negative. 

2. THE HEAT OF MIXING AND ITS DEPENDENCE UPON TEMPERATURE AND CONCENTRATION 

At the temperature of the He I- He I I phase transition there should also be observed a discontinuity 
in the heat of mixing. The magnitude of this discontinuity can be computed using an expression8 for the 
quantity of heat (<b) absorbed during the transfer of a single particle out of the pure liquid substance 
(He3) into the mixture: 

awm wL k 2 a I Pa qa = -- a = - T - n- , aN:;' ar pg (14) 

where awm;cmfl is the change in the heat function of the mixture as one atom of He3 is added to it, while 
wf is the molecular heat function for pure liquid He3• 

At TA 

since 

Therefore 

Aq3 =- T~.,Ll (821J>j8T8N':J. 

Taking the fact that cl> = Ncp and Eq. (6) into account, we obtain 

Llq3 =-(1- xL) ACp8T~.,j8xL. (15) 

In the case of small concentrations, using the value ll.Cp = 7 cal/mole degree for He4, from Ref. 10, and 
the value of aT /8xL = -1.5°, from Ref. 3, we obtain for the discontinuity in the heat of mixing at the 
He II- He I transition ll.<b = 10.5 cal/ mole. 
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FIG. 2. Dependence of the 
heat of mixing (q 3) upon temper
ature. Calculated data for a 
mixture with 8.3% He3• 

It should be noted that the indicated changes in the distribution 
coefficient and the heat of mixing at the A-point can be related to 
the discontinuities in the derivatives of the partial and total 
pressures: 

(16) 

Using the experimental data for the dependence of the vapor 
pressure upon temperature for mixtures of varying He3 content, it 
would be possible to compute both the one quantity and the other from 
(16). In view, however, of the great difficulty in determining suf
ficiently precisely the indicated discontinuities in the derivatives 
of the partial and total pressures with respect to temperature, it 
does not appear possible as yet to use this method to compute the 
quantities in (16). 

The temperature dependence of q 3 to either side of TA can be computed using Eq. (14), The results 
of such a calculation are presented in Fig. 2 for a mixture of 8.3% He3 content. The error in the mag
nitude of the discontinuity ll.q 3 at the A-point is naturally determined here by the error in determining 
the magnitude of the. discontinuity in the derivative of P3 with respect to temperature. 
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3. THE HEAT OF TRANSITION AND ITS DEPENDENCE UPON He3 CONTENT AND TEMPERATURE 

Using the liquid-vapor diagram of state which has already been obtained,6 it is possible to determine 
the temperature and concentration dependences of the heat of the transition from mixture to vapor. For 
the case of mixtures, however, the determination of the heat of transition itself, as is well known, re
quires some elucidation. 

The fact is that the relative quantities of liquid and vapor are in this case related by the lever rule 

(17) 

where 

c= (N~>+N~>)/(Nv+ Nd 

is the mean concentration of the He3 isotope in the system. Therefore the transfer of a molecule from the 
liquid to the vapor (or vice versa) by an equilibrium process (in accordance with the state diagram) can
not take place without variation of the pressure or the temperature. Such a situation does not arise in a 
single-component system, in which the transfer takes place at a point (for constant P and T). 

Thus in determining the heat of transition it is necessary to specify the process by which the transition 
takes place. It is natural to investigate two processes: a) the transition takes place at constant tempera
ture (T = const.), b) the transition takes place at constant pressure (P =const.). 

Inasmuch as the heat of transition from gas to liquid for a single particle is 

), = ras; oNv. (18) 

it is necessary, in order to determine this, to compute the change in entropy <58 accompanying the 
transfer of <5Ny particles from the gas to the liquid. In doing this it is necessary to remember 
that the variation of all the parameters of the system proceeds in accordance with the diagram 
of state. 

If it is assumed that T = const. [case (a)], then, taking into account the constancy of the number of 
particles of each sort in the system, and the fact that P and xy are in this case functions of xv we 
readily obtain 

• • xL- xv {asL ap asL xL- c r asv ap asvaxv)} 
oSjoNy = Sy- SL + XL- c axy ap axL + axL + c- Xy \W axL + axyaxL . 

1-L---
, c -xv oxL. 

(19) 

Here Sy and SL are the entropies per particle of the gas and the liquid. In deriving Eq. (19) the lever 
rule (17) was employed. 

If xL = c (Fig. 3; a large quantity of liquid and virtually no gas in the system), then 

8S (asL aP asL ) 
i3Nv = (Sv-- SL) + (xL- x-y) ap axL + axL . (20) 

If xy = c (Fig. 4; a large quantity of gas and virtually no liquid in the system), then 

(21) 

Making use of the fact that 

Sy= XyS~) + (1- Xy)S~>, SL = xLs~> + (1-xd s~>, 
(22) 

as we.ll as of the equality of the chemical potentials of each component in the gas and the liquid, we find 
from (20), (21), and (18), assuming the gas to be ideal: for xL = c: 

(23) 

for xy = c: 

(24) 
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FIG. 3. For calculation of 
the heat of transition in the 
case T =const. and c = xL: 
(1) state of the system before 
the transition; (2) concentra
tion in the gaseous phase 
formed as a result of the tran
sition; the arrow indicates the 
motion of the system due to 
the transition. 

FIG. 4. For calculation of 
the heat of transition in the 
case T =const. and c = xy: 
( 1) state of the system before 
the transition; (2) concentra
tion in the liquid phase formed 
as a result of the transition; 
the arrow indicates the motion 
of the system due to the tran
sition. 

If we take into account the fact that the entropy of the liquid is 
practically independent of the pressure, and if in calculating the 
second term in (24) we assume that the gas is ideal, we obtain: 

(25) 

'Ar, -'v = kP (a~; ptv + kT (Xy- xd (i) ;::)r. (26) 

In calculating the second term in Eq. (26) it is convenient to 
make use of the expression8 

(27) 

Then 

),r, x-y= kP (o In PjoT)xy + kT (xv-xd 2/Xv(l- Xy). (28) 

In precisely the same way it is possible to calculate the corre
sponding heats for the case P = const.: 

Ap, ·"L = kP (oln PjoT)xL + (xc- Xy) C~ (oTjoxL)P; (29) 

Ap, Xy = kP(o In PjoT)xy + (xL- Xy) c~ (oTjoxy)p, (30) 

where c~ and c~ are the specific heats per particle of the liquid 
and the vapor. 

Analysis of the expressions thus obtained shows that for each 
of the cases investigated [Eqs. (25), (28) -(30)] the heat of tran
sition is composed of two terms,* the first representing the heat 
entering directly into the transfer of the particle from one phase 
into the other, and the second representing the heat associated with 
the change in entropy of the system due to this transfer. We note 
that in a real experiment (under the corresponding equilibrium 
conditions) the heats measured will be just those calculated here. 
The possibility of separating each of the heats into two components, 
each having a definite physical significance, arises from the fact 
that the first component may be obtained directly, from the quan
tity of heat absorbed during the transfer from the solution into the 
vapor of a single particle of the first constituent (A. 3), and from the 
corresponding quantity for the second constituent (A. 4). In actuality, 
when one mole of the mixture passes from the liquid, of concentra
tion xv into the gaseous phase, its concentration will be xy; in 
consequence xyA 3 + (1- xy )A- 4 calories (as calculated for a single 
particle) will be absorbed in the process. In accordance with ref
erence 8, however, this quantity will be equal to the first term 

(31) 

The heat of transition for the case of a process taking place at T = const. can be calculated for the 
cases xL = c and xy = c from (25) and (28), using the data obtained from investigation of liquid-vapor 
equilibrium in the He3 - He4 system. The results of these calculations are presented in Fig. 5 (xL = c), 
which shows the dependence of AT ,x upon the concentration of the phase being formed (xy). It should 
be mentioned that in calculating ~•T,xt the non-ideality of the vapor was taken into account by determining 
the molar volume using the second virial coefficient.U The values of A for pure He4 and He3 were 
taken from Refs. 12 and 13. The solid curves in Fig. 5 refer to various temperatures. The dashed lines 

*The absence of a second term from Eq. (25) is of course due to the fact that we have ignored the 
variation of the liquid phase entropy with pressure. 
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FIG. 5. Dependence of the heat of transition AT,xL 
upon the concentration of the phase being formed (xy) • 

show the heat of transition which would obtain 
in the additive case. 

From these diagrams it follows that the 
heat of transition as calculated by the method 
indicated passes through a minimum, the posi
tion of which moves in the direction of smaller 
xy as the temperature is raised. In the re
gion of high xv the points lie on the dashed 
line corresponding to the additive case, while 
the concentration region over which thi~ is 
true increases as the temperature rises. 
Above 2.2°K AT,xL has a practically linear 
dependence upon xv. 

A. caljmole, 

z 

~ ~ t--..2 '4J 
~ .............. --::- - . 

~ 
--, -- r-., 

.'.5 
""-.. r- ... _ 
~ 

-....... ......... _ 

·~· --
~ 

~ ~ ~ / '2..7 
to-o ;if' 

fl. 

!. 

0 

FIG. 6. Dependence of the heats of transi
tion ;\ T ,xL (curve 1) and ;\ T ,x (curve 2) 
upon the concentration of the p~ase being 
formed. 

Fig. 6 shows for a temperature of 1.8°K 
the dependence of the heats of transition 
AT,xL (curve 1) and AT,xy (curve 2) upon 
the concentration of the phase being formed 
(xv in the first case and xL in the second), 
as calculated from Eqs. (25) and (28). 

It is clearly evident that these heats differ fundamentally from one another, both in magnitude in the 
nature of their dependence upon the concentration. 

It should be noted that at the transition through the ;\-point the heat of transition suffers a disconti
nuity, as is evident from Eqs. (25), (28), (29), and (30). Due to the small magnitude of the change in dP/dT, 
such a discontinuity is not clearly displayed in the calculated heats. It can be supposed, however, that 
the considerable change in the heat of transition near the ;\-point which is evident in Fig. 5 is connected 
with this circumstance. 

CONCLUSIONS 

1. A thermodynamic study of the phenomena associated with the He I- He II transition in mixtures of 
the helium isotopes has been carried out. It is shown that in the interval 1.35- 3.0°K this transition is 
a phase transition of the second order. 

2. It is shown that at the temperature of a second order phase transition in helium isotope mixtures 
there should be observed discontinuities in the derivatives of the partial and total pressures with respect 
to temperature. This effect is confirmed experimentally. 

3. It is established that at TA there should be observed a discontinuity in the derivative of the dis.:.. 
tribution coefficient with respect to temperature. 
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4. It is shown that at TA. there should be observed a discontinuity in the heat of mixing and a discon
tinuity in the heat of vaporization. A numerical value for the magnitude of the discontinuity in the heat of 
mixing has been obtained for weak mixtures. For one of these mixtures the temperature dependence of 
the heat of mixing has been calculated. The dependence of the heat of transition upon the concentration of 
the phase being formed has been calculated for various temperatures. 
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By use of a density matrix in the proper approximation, equations are derived that describe 
both stationary and nonstationary operating conditions of the molecular generator. 

THE theoretical problems connected with the molecular generator have been discussed by several 
authors.t-3 In these articles, however, only stationary or nearly stationary operating conditions are de
scribed. It is of interest to derive equations of the molecular generator that are valid for arbitrary 
operating conditions. 

Upon replacing the resonant cavity by an equivalent circuit it is not difficult to derive the following 
equation, which describes the oscillations in the circuit: 

E + 4rrP + (w0 1 Q) (E + 4rrP) + w~E = o. (1) 

Here E is the electric field intensity, P is the polarization of the medium in the resonant cavity, Q is 
the figure of merit of the circuit, and w0 is the natural frequency of the circuit. Equation (1) is still 


