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The relation between matrix elements for "particles" and "hole" configurations is consid­
ered for the case of two-particle operators which appear in a general non-central interac­
tion. The particular cases of central, tensor, and spin-orbit forces are discussed. The 
relation between matrix elements of one-particle operators is briefly discussed. 

A configuration of the type jm-n, with n < m/2 (where m is the total number of states in the j shell) 
is called a "hole" configuration in the j-shell. The properties of states of the configurations jn and jm-n 
are similar in many ways. The relation between the matrix elements for the configurations ln and tm-n, 
where m is the total number of states in the £-shell, was investigated by Racah1 for atoms, for one­
particle operators and for the special case of two-particle operators in which we have central pair in­
teractions. In the present note, with this same end in view, we analyze the two-particle and one.-particle 
interactions which occur in nuclear theory, for the cases of j-j and L-S coupling. 

1. TWO-PARTICLE OPERATORS 

The operator for any central or non-central interaction can be represented as t-s 

V(l,2) = {Sk(I,2)·P(1,2)} = ]{Sh(su•(l)·su•(2))·P{!V•(l)·lv•(2).)}, 
uv (1) 

where { Ak. Bk} is the scalar product of two tensor operators,1 sk (sut (1) · sU2 (2)) is the tensor product2•3•9 
of rank k of two single-particle tensor operators of rank u1 and u2, acting in the spin spaces of parti­
cles 1 and 2, respectively, and Lk(£V1(1) •£V2(2)) is.a similar product of orbital operators: 

L~ =] c~:~~p.q t~' (I) t~~p(2). 
p 

For central interactions, k = 0, while for non-central interactions, k I= 0. For example, for tensor 
forces2- 5 k = 2, for spin-orbit forces2•3•6•1 k = 1. 

(a) Applying formulas of the Hacah tensor algebra, 1~• 8 •9 and using (1), we can always write the inter­
action operator in the form 

] V (ij) = ] ] Ar {t' (i) · tr (j)J, 
ij ij r 

where r is the rank of the tensor operator in spin-orbit space, We know1 that the expression for central 
pair interactions in L-S coupling: has this same form. Therefore, there is a simple relation between the 
matrix elements for any central or non-central forces in j-j coupling for the configurations jn and jm-n, 
which is of exactly the same type as the relation between the matrix elements for central interactions for 
the configurations f1 and lm-n (Cf. Refs. 1, 10, 11, and below). In particular, if j-j coupling is valid 
and there are only pair interactions, then we should get the same level schemes for Li6 and N14, Ca43 

and Ca45 etc. (The last example is discussed briefly12 in connection with the analysis of the structure of 
nuclei of the 1 f1; 2 shell.) 

(b) The case of L-S coupling :is much more complicated. We rewrite expression (1) in the form 
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~V (ij) = ~~ {S"(su•(i), su• (j))·Lk(LV•(i)·lv•(i))}= ~~V~"W'v'(i)·tu'v'(j)) = + ~V~"(Tu,v,.ru,v,) 
i j if uv if uv uv 

-+ ~~ V~k (tu,v, (i) · tu,v, (i)). 
(2) 

uv i 

for the case of n particles. 
Here tuv is a double tensor of rank u in spin space and rank v in orbital space, V~ ( tUtVt. tU2V2) 

is the scalar part of the double tensor product vkk ( tUtV 1· tU2V2) of rank k in spin space and rank k in 
orbital space; Tuv = ~tuv (i); the terminology is the same as in Racah's paper. 1 The purpose of the 

i 
transformation (2) is to express the two-particle operator in terms of one-particle operators so that we 
can later make use of the relations between matrix elements of one-particle operators for the £ n and 
£ m-n configurations which were derived by Racah1 and which are also discussed below. Using tensor 
algebra and fractional parentage coefficients3•13 •14 for calculating the matrix elements, we arrive after 
very involved calculations at the result: 

=~A(u,v)- ~B(u,v). 
uv 

xkk is defined by the matrix 
uv 

U'CI 

[k] = 2k + 1, and the other symbols are the same as Racah's. 1 To proceed further, we fix u1, v1, u2, 
and v2 on the right hand side of (3). When we go over from the £ n configuration to £ m -n, we see that 

A (u, v)---? (- 1 )u,+v,+u,+v, A (u, v), B (u, v)--;.- B (u, v). 

We now present some specific cases. k = 2 for tensor forces, and the last term on the right of (3), 
i.e., B (u, v), becomes zero. It is easily seen that the tensor interaction operator contains only those 
one-particle operators tuv ( u = 1), which change the parity of the particle state only if v is odd (for 
v = 1, it is a vector operator). Since all the matrix elements which appear in the expression A ( u, v) 
are diagonal with respect to configuration, v1 and v2 are even. Thus the following assertion holds for 
tensor forces: the matrix elements 

(lnocLSJ M I~ V (ij) jtnQ(' L'S'J M) H (tm-nQ(LSJ M I~ V (ij) !tm-noc' L'S' JM) 
ji ij 

are the same (a may be, for example, the seniority quantum number, or the isotopic spin T, or both; 
the matrix elements are diagonal in T ). For central forces the expressions A ( u, v) also coincide for 
the £ n and £ m -n configurations; the expressions B ( u, v) are easily seen to be independent of L, S, 
L', S': ~ B ( u, v) = nB0 for the £ n configuration, ~ B ( u, v) = ( m - n) B0 for the £ m -n configura-
tion. u,v uv 

So for central forces the "level schemes" are the same for the £ n and £ m-n configurations, though 
the absolute values of the "binding energies" differ by (m- 2n) B . As mentioned earlier, this fact is 
well known. 1•10 •11 

Our last example is the spin-orbit force. It is not difficult to show that for any interactions with k = 1, 
two types of operators tUV occur in the expansion (2): (a) for odd v the parity of the particle state 
changes (fnr v = 1, the operator is a vector), (b) for odd v the parity of the state is unchanged (for 
v = 1, the uperator is a pseudovector). 

Thus even though the transformation properties for particular pairs tUtVt, tu2v2 are simple when we 
go from ~_n to ~_m-n, there is no overall simple relation. Both the tensor and spin-orbit forces give 
rise to spin-orbit splitting, but they beh,ave completely differently; even if the spin-orbit forces are, 
roughly speaking, equivalent to a spin-orbit coupling of the type ~ ~lj · Si, with a constant ~ which in-

1 

creases with filling of the shell,6 •15 the tensor forces have no such clear connection with the Mayer-Jensen 
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shell theory. All the theoretically admissible types of interaction have been enumerated in Refs. 16 and 
17. 

The relation between matrix elements for "particles" and ''holes" can also be investigated by the same 
general methods for more complicated cases such as configuration mixing. The simplest example is the 
matrix element 

(jm-l TlJlrx.l> jl, T Jrx.l ~ V (ij) I jm-IT1Jlrx.l,j2, T Jrx.'), 
ij 

where J 1 = j, T 1 = %. and a is the set of quantum numbers which are needed in addition to J and T 
for unique characterization of a state. This matrix element has previously been calculated17 • 18 by other 
methods. The basis for the cal-culation is a formula which is related to formula (33) of Racah's paper13 

and derived in similar fashion: 

<in-IT lJlrx.l, ir, T Jrx.j ~ v (ij) I r-ITlJlrx.l, iz, T Jrx.') = 0 (jl, iz) <in-IT!Jlrx.l I ~' v (ij) I jn-lJlT lrx.l) 
ij ij 

+(n--1) ~ (4) 

If n = m, from formula (19) of Racah's paper13 

By substituting these values in (4), we obtain the simple final formula 18 after some transformations. 

2. ONE-PARTICLE OPERATORS 

Racah's1 results require only slight modification (the inclusion of isotopic spin): 

(lm--nrx.LSTMLMsMr iF~~~ Jlm-nrx.'L'S'T'M~M~M~) 

=-(- It+v+T'-T <Lnrx.LSTMLMs- Mr I F~~~al znrx.'L'S'T'M~M~- M~). 

F»Y3 is a triple tensor, r its :rank in isotopic spin space, and {3, y, and o are the indices of the com­
ponents of the tensor. For operators which are diagonal in MT (electromagnetic transitions, spin-orbit 
coupling operator ~~!i • Si etc.), o = 0. For the operators of {3-decay theory, o :f- 0. The state T, 

i 
MT of the configuration fn is related to the state T, -MT of the configuration fm-n, because, for 
example, a proton corresponds to a "proton hole" in the filled shell, i.e., to a nucleus with an odd neutron, 
so the sign of MT changes. Thus the magnetic moments of nuclei with configurations fn and fm-n 
are the same, while their quadrupole moments have opposite signs, as is well known. 

In conclusion, the author expresses his thanks to Prof. I. S. Shapiro for reading the manuscript and 
for miscellaneous comments. 
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The energy dependence of the cross section for an elastic scattering process X ( aa) X is ex­
amined at energies near the threshold for a reaction X ( ab) Y ( b being a neutron). It is shown 
that the scattering cross section has a singularity at the threshold. From the singularity, one 
can obtain the spin and parity of the nucleus Y formed in the reaction, and also simplify the 
phase analysis of the elastic scattering. 

1. INTRODUCTION 

IN a recently published work1 it was shown that the cross section for the elastic scattering of protons 
from Li7, Li7 (pp) Li7, has a peak at an energy corresponding to the threshold of the reaction Li7 (pn) Be7• 

The peak is about 40 kev wide and at some angles its height is 20 - 30% of the cross section at the same 
angles. The existence of such a noticeable anomaly in an elastic scattering cross section makes it worth 
while to consider in general the behavior of the cross section for the elastic scattering X ( aa) X at en­
ergies near the threshold Ethr of the reaction X ( ab) Y. Taking advantage of the fact that the energy 
dependence of the reaction cross section near its threshold is known, one can use the unitarity of the scat­
tering matrix to determine the energy dependence of the phases for scattering near threshold. 

It turns out that the behavior of the elastic scattering near threshold gives information not only on the 
scattering itself, but also on the reaction. In particular, such experiments can be used to find the spin 
and parity of the particles formed in the reaction, and also greatly simplify the phase analysis of the elas­
tic scattering near threshold. We consider the simplest case first, that all particles a, X, b, Y have 
spin zero. 

2. SPINLESS PARTICLES 

We write down the wave function at energies above threshold (E?::: Ethr>· At such energies, both 
elastic scattering X ( aa) X and the reaction X ( ab) Y are possible and the wave function has the asymp­
totic form 

(2.1) 


