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and the integration and summation should be carried out over the surfaces S l. 
V being known, we can find the required probability (5) by means of relation (9) which remains valid. 
All the probabilities found above may be useful, for example, in investigations of the cosmic radiation 

by means of coincidence counters or cloud chambers. 3 

It should be noted that the probabilities found are analogous to the probabilities of certain configura~ 
tions of molecules in a gaseous medium. In the case studied above, however, the problem is greatly sim­
plified since all the probabilitie,s can be expressed by means of the distribution function ( 1), while there 
are no similar expressions for the correlation function in gasses •4 

The author wishes to express his gratitude to Academician I. N. Bogoliubov for a constructive discus­
sion of the results and to Prof. D. D. Ivanenko for his constant interest in the work. 

1K. Ia. Khristov, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 680 (1957), Soviet Phys. JETP 6, (1958). 
2K. Ia. Khristov, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 877 (1957), Soviet Phys. JETP 6, p. 676 

(this issue). 
3 B. Rossi, High-Energy Particles 
4 N. N. Bogoliubov, llpo('iJieMM ,IJ;HHaMHqecKoif TeopHH B cTaTHCTHqecrm.H <f>H3HKe (Problems of Dynamic 

Theory in Statistical Physics), Gostekhizdat, M-L, 1946. 
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The average values of the spin operators for a system of particles having spin 1 and 112 are 
calculated, The transition matrix M is given explicitely. Consideriation is given to the case 
of small energies, when o:ne can restrict oneself to S- and P-waves. Expressions are ob­
tained for the cross-section, polarization, and correlation function. Relationships are estab­
lished between the paramElters of the transition matrix and the experimentally observed values. 
A group of experiments is suggested which could enable one to determine, through triple­
scattering, the amplitude of the scattered wave and to carry out a phase-shift analysis. 

THE theory of reactions involving polarized nucleons has been recently developed in a series of arti­
cles.1 The polarization arising in nucleon-nucleon collision is due to spin-orbit interaction, and its 
measurement provides additional information about the coefficients of the amplitude for nucleon-nucleon 
scattering. A group of experiments is indicated which would allow one to determine the nucleon-nucleon 
scattering amplitude and to carry out a phase-shift analysis. 

The present article is concerned with the elastic scattering of nucleons against a target made up of 
spin 1 particles. 

The state of the system is described as usual through the Neuman density matrix p in the combined 
spin space of the system of two particles, or through the density matrix for two independent beams of free 
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particles with spin u' and s'. Since the density matrix is a six-rowed Hermitian matrix, it is defined 
through a linear combination of 36 real quantities for which one may take the average values of a com­
plete set of independent Hermitian operators in spin space (their number equals the square of the dimen­
sionality of the spin space). The complete set of operators satisfies the equations 

(1) 

The average value of any operator is defined as 

< S >inc = Sp (PineS) (2) 

with the condition that 

Sp Pine= 1. 

An arbitrary matrix may be linearly expressed in terms of the operators sf..L. Expressing the density 
matrix in terms of the average values of the spin operators, we obtain 

Pine= [(2sa + 1) (2sb + 1)]-l ]<SP. >S~'-. 
p. 

(3) 

In this way, the average value of the matrix Sf..L determines p, and, at the same time, the spin state 
of the system. 

If we know the transition matrix M which transforms each pure state of a mixture described by some 
matrix Pine• into some corresponding state of the mixture described by Pscat• we then have for the 
scattering of a beam 

The average value of any operator S1 in the spin space of particles is given, after collision, by the 
expression 

< S1 >scat= Sp (pscatSl) I Sppscat · 

The following expressions are then found for the differential reaction cross section and the average 
value of the operator S1: 

<Sl >scat=~ <SP. >inc Sp (MSP.M*Sl) J ]<S" >incSP (MS"M*). 
p. " 

THE AVERAGE VALUES OF THE SPIN OPERATORS 

(4) 

(5) 

(6) 

(7) 

Applying the well-known Clebsch-Gordan formulas, the spin-quartet wave function may be written in 
the form 

x(3/2, 3/2)=x(1h, 1h)x(l,l), xe/2, 1/2)=V2/aX(1/2, 1/2)x(I,O)+V1/ax(1/2,- 1/2)x(1,1), 

X (3/2, - 1/2) = yij; X (1!2, 1/2lx (I,- I)+ Y2/a X (1/2,- 1/2)x ( 1, 0), X (3/2, - 3/2) =X (1/2,- 1/2)x (I,- 1), (8) 

and the doublet function becomes 

X (1/2, 1/2) = Y1/a X (1/2, 1/2) X (I, 0)- V2/a X (1h, - 1/z) X (I, I), 

X (1/2,- 1/2) = V% X (1/2, 1/2lx (I,- I)- Y1/a X (1/2,- 1/2lx (I ,0). 

Operating on these functions with the operators ax, ay, az, Sx Sy and Sz, and applying the ortho­
normality of the functions x (s, ms>• one obtains 

(9) 
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By means of a suitable transformation, one may go from this representation to a 2-particle represen­

tation which may be more easily obtained directly as a direct product of the matrices a' and S' in the 
spin-spaces corresponding to a nucleon and a deuteron. 

We shall denote unit vectors in the direction of motion of the incident and scattered beams in the 
center-of-mass system respectively by ki and kf• and for convenience in future expansions, we shall 
introduce as usual the orthogonal vectors 

(10) 

Transforming into this system by means of Euler's formulas, 3 we obtain formulas for aN, ap, aK' SN, 
SP, SK expressed in terms of th'e angles 3- and cp; we shall not list them here, as they are rather 
cumbersome. 

THE TRANSITION MATRIX 

The most general form of the matrix M, which determines the amplitude of a scattered wave of given 
spin and momentum as a function of the spin and momentum of the incident wave, may be obtained by 
imposing upon it the conditions of invariance with respect to space rotation and time reversal. This 
matrix must be a scalar which is obtained from a combination of 36 linearly independent matrices in spin 
space and functions of the momenta K, N, P. The effect of time reversal leads to the transformation 

' k'' k · k' k · K' K· N' N· P' P a = - a; .1 = - !' f = - i' = , = - ' = - . 
The expressions [u x S]N and (uK) (SP) +(uP) (SK) change sign with time reversal and therefore 

must be excluded from consideration. In writing out the matrix M, one may limit oneself to terms of 
second order in S, as higher order terms in the spin operator S may be given as functions of these. 
Thus, for example 

where 
s1 x k = eukS;, s1 x k. z = si1ksu. 

In this fashion one obtains the most general form of the scattering matrix for particles of spin 1/2 

against particles of spin 1: 
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M =A+ BSN + C [(SpSp- 2/a i3;1) + (SKSK- 2fa a;1)] 

+ {A 1+B1SN+Cd(SpSp-2la B;1) + (SKSK- 2/ 3 a;1)]} aN+ D (apSp+ aKSK) 

+ E (apSp- aKSK) + 1/ 2 F (aPSNSP + a~~K) + 1 / 2G(apSpS N+ aKS0N) 

+ 112 H (aPSNSP- a~NSK) + 1I2 K (aPSPSN- aKS~N), 

687 

(11) 

where the coefficients A, B, C etc, appear as functions of ki and ~kr· i.e., as functions of the energy 
and the cosine of the scattering angle in the center-of-mass system, 

In order to obtain the matrix in explicit form, we apply the method of Blatt and Bienderharn.4 The 
amplitude of the scattered wave is given as the sum of two terms: 

f (&) = f1 (&) + f2 (&). 

The first of these 

{ 1 (&) = (- A'YJI 2~2 ) exp [- i'1) 1n~2 ] 

depends on Coulomb scattering, while the second 

f (s') = i)..<Ds' ~ x. (s', ms') ~ i 1- 1'7t'l, (21 + 1)'1• (I, s, O,ms! !, s, J, ms) 
ms' Jll' 

x (I', s', m5 - ms'• ms•\1, s', J,ms) (Bs'sBz·z- s:'l'; sz)Yz•,m5 -ms• (&, <p)= ~X. (s',ms') ~ Mm 5 ,m5 ams 
, ms' ms 

(12) 

(13) 

gives the difference between the amplitude of a wave scattered against a charged sphere and f1 ( 1t.). In the 
above expression we have used certain quantities defined as follows: 11 = e2 /hv; ~ = sin ( 1t /2); <I> s' is the 
product of the wave functions of the final nucleus and the scattered particle; the quantities ams obey the 
condition 

ams' ams = i) (ms- ms,) I (2s + 1 ). s;., l'; s, l = Ds', si)l', I exp [2i (~z- '1) In 2kr)] 

are the elements of the scattering matrix, r is the radius of the screened Coulomb field in a given 
channel and 

~~ = ~~ + <P 1 + 0 o• 

where '1/11. = a l.- a 0 is the Coulomb phase shift: 

exp (2i~1 ) =(I+ i'Y)) ... ( 1 + i'Y)) I(!- i'1)) . •. ( l - i'1)), 

a0 is the S-wave phase shift; <I>£ = ~ l.- ap_ describes a further phase shift occurring during scattering 
against a charged sphere of radius R as compared with the shift which occurs in point charge scattering. 

In order to carry out a phase-shift analysis, it is necessary to determine the dependence of M upon 
the scattering angle and the phase shift. The dependence of the elements of the matrix M upon cp is 
evident from Eq. (13), and comparing them with those matrices of which it consists, we obtain 

( a ce-irp ge-2irp he-airp 0 0 

1 
beirp d fe-irp ge-2irp 0 0 

ge2irp -fei'P d -be-i'P 0 0 
M=A ~ . (14) -heairp ge2irp -ceirp a 0 0 

0 0 0 fl. -ve-irp I 
0 0 0 0 veirp fl. } 

the matrix elements a, b, c represent series of Legendre polynomials P~(cos ,'}),and the coefficients in 
these series depend on the phase shifts. 

The elements of this matrix obey the additional condition 

1 ( 2 ) 2 1 -- a-d-- =--- b c cos 2& Jf3 g "J(3sin 2& ( + ), 
( 15) 
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which appears as a result ot the :invariance of M with respect to time reversal. As mentioned above, the 
matrix aK • SP + aP • SK is one of the matrices belonging to the complete set in terms of which M may 
be expanded; thus it can only enter in the expansion when Sp M (aK • SP + aP • SK) is identically zero. 

In the particular can when the energy is sufficiently small to permit the use of S- and P-waves only, 
the scattering amplitude may be written in the form: 

eikr 
~ (s, s') = Zikr ~ ~ [4rc (2L + l)J''· (L, s, 0, ms I L, s, J, ms) 

m 5 m 5, L, J 

X (L, S, ms- ms', ms' I L, s', J, ms) [l- exp (2i~z)l YL. ms-msJ&, cp). 
(16) 

For doublet transitions we obtain 

M - 1 {oy'l• + cos "e-2i<V ("('/, + 2·?1. )} 
1/2. 1!2- -t, ~0, 1 /2 \T 11. 1/z 11. 1/2 ' 

M ,1,. _,1, = i, sin & exp [- i ( cp + 2~)] (- 1;'.•,1, + ~~.'·J. M --'/,, _,1, = A { 1~,',1, + cos & exp (- 2i~) (·ri.'.:. + 21;',',1), ( 17) 

h J ( A-J ) . .h;r were Yl,s =exp -..,l,s sm "'l,s' 

and for quartets 

M, ,. = - ), {oy'l•, + cos & exp (-- 2i•") (~ "('!.,, + ! oy'/•, )} , M - 3 V3 I exp [i ((!) 2·1·)] sin & (oy'/, oy'/• ) 
/,, I• •o. /, 'f 5 11," ;) 11. /, '/z,'i•- ---s-' •- 'f 'I.'/,- 1I.'/,' . 
M-'!,.'1,=0, M 0 M _ 1 · " _ . (' , 2,")] (-- V3. ,1, ¥3 ,1, + 3¥3 ,1, ) _.1,,.1, = ; 'I,,'J.- 1\Sinv-exp [ t 'P -r 'f 2 [1,.1, + 5 11,.1, 10 IL'I, • 

M - ' s1"n "exp [t" (co - 2·")] (_!_ oy'/, + ~ ···'/, - ~ "(•;, ) 
-'/,, 1/o- 1' "lT T 'f 2 11,'/, 5 II,'/, 10 II,'/, ' M-•J,,'J,= 0; M·!..-'1• = 0, 

M, -'I =-/,sin&exp[-i((!)+2·")l(!__'Y1''• +~"(•,, -~"( • \ 
'" • ' 'f 2 1,'J, 5 1I.'I• 10 1I.'i•)' 

X ( 'I 1 'I 9 .,, \ M ) [. ( 2 ")] . (l (¥3 'I ¥3 'I 3¥3 ". ) . \11,'•t,+511,'•1,+511,•t,;• -'1,,-'J,= ,exp t cp- 'r stnv --:f""IL',,,--5-'(1,',1,---rolt•J, ,. 

M.1,, -'I, = 0, M.1,, _.,, = 0, M _,1,, _.1, = - 3 ~;r I, sin & exp [- i ( 'P + 2~) l ( r;';.1,- 7{,'.1,), 

M _,,, _,, = A {"(•;,,. +cos &e-2i<V ( ~ "('!., + ~ oy'l.,, )} . 
·•·• ·' •o,., \5 lr, /, 5 11, lo 

DETERMINATION OF THE PARAMETERS OF THE TRANSITION 
MATRIX FROM EXPERIMENTAL DATA 

(18) 

Expressions (6) and (7) apply to particles of arbitrary spin and beams of arbitrary polarization; we 
shall apply them to the concrete case of scattering of particles having spin 1/2 against an unpolarized 
target of particles with spin 1. 

In this case, the only non-zero matrices before collision are 1 x 1 and ax 1, and these formulas 
become 

1 , , P Sp (M*aM) + Sp (aMcrPincM') 
QP=6{Sp(MM )+Sp(MaM )Pine}. P =(aXl)scat= Sp(MM')+Sp(MaM')Pinc (19) 

We write here u for a x 1, and denote <a x 1>inc by Pine· When scattering an unpolarized beam of 
nucleons, the expressions for the differential cross-section and the polarization simplify to 

QN={Sp,MM', QNpN={SpMM'(;N (20) 

Substituting Eq. (14) for the transition matrix M, and expressing aN in terms of the Eulerian angles, 
we obtain explicit forms for the eross-section and the polarization: 

QN = -} 1,2 {I a i~ + i b 12 + I c 12 + I d [2 + If 12 + 21 g 12 + I h 12 + I flo 12+ !vf2}, 

QNpN = ; ),2 Im {Vi (ba' +de'+ fg' + gh') + ; (bg' + df') + {- floV•} • 
(21) 
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In the particular case of small energies, limiting ourselves to 8- and P-waves, we obtain for the scatter­
ing of a proton against a deuteron: 

QN / 2{('1 1 )2 2 ('I 1) (" .-n'/, ) 2 , .-n% + 2 -~ & [ (" <D'I )+2 (~ <D'I ) + (r <D'' )+2 (' <D" ) 
= , \2 ~· + 3\2 ~ [u c., '*'o,'f, + u (,, '*'o,'/,)1 3 2~2 cos u c., I.''t, u , 1:'/, u '"' ;:.,, u ~, !.'•t, 

+ 3u(~, <D;:.Jl+ ~ sin2 <D~,'· 1,+{ sin2 <D~:.;,+}cos & {sin <D'1',, [u (<D;),',,,, <Di.'•t,) 

+ 2 (sin 2 <Di,\~ + sin2 <D{,'•t.l + 3 sin2 <D:1,'.1,- 2 W] + sin2 &· W}, 

where u (lXI,.; ~{:.,) =sin~{;, •• cos (IX{, - 2!'~- ~{:, •• ) and 

1 · 2 '{, r'h'f, ) 1 · 2 ..n'12 rr.'f, ) 3 · 2 'f, 'f, 21 · 2 •;, m'f, )• W = 3 sm (<D1 ,•1,- '*'1;1, + 30 sm ('*'1.'1,- '*'1.'1. + Tii sm (<D1,.1,- <D1,.r,) + 50 sm (<DI.'f,- w 1 ,•1, , (22) 

In addition to the cross-section and polarization, one may also obtain an experimental value for the 
correlation function C ( p, q) = <up · Sq > scatt• by measuring simultaneously the polarization of the 
scattered beam of particles (kf) along a direction p and that of the beam of recoiling particle (-k f) 
along the direction q. 

If the incident beam is unpolarized, one finds 

QNCN(N,N) = ~Sp MM* (aN) (SN) = f /.2 {+ [jbj2 + ldj2 +If 12 +I g [2 -I fLI 2 -jv i2 l + v~ Re [c*f + b~h-- a*g -d*g]}, 
(23) 

QNCN (m,P) = ~ Sp MM* (am) (SP) = ~{sin (& + ~)cos & [I a 12 + i c [2 + I h j2 -+(I b 12 +I d 12 + if \2}] 

- sin&cos (& + ~) [; (\b 12 + \d [2+ if j2)] + v·~ sin&cos (& + ~) Re (bh* + cf*- ag*- dg*) 

- V 23 cos (2& + ~) Re (ab* + cd* + fg* + gh*)}, 

(3 is the angle between m and K, and equals 1r /2 when m coincides with P. By carrying out triple 
scattering experiments, one may obtain additional data, for example how the direction and magnitude of 
polarization changes after a second scattering. In order to describe the geometry of these experiments, 
we introduce a unit vector n in the direction [N x ki], lying in the plane of the second scattering. It may 
be seen from Eq. (19) that the cross section and polarization for second scattering may be written in the 
form 

(24) 

where A"" PNPinc represents the scattering asymmetry, and T is a second rank tensor having components 

(25) 

Straightforward triple scattering experiments yield 

QN(N;t,N}={ Sp McrNM*crN = ~·{iRe [a*(d- 2J-L)l+ 3 ~3 Re [(f- v- b) c*J+ 3 : 3 Re [g* (- d + p.)] 

+ 3 ~3 [b* (f- "1)]} QN(m,'t,n) =~ sin2& sin &cos~{la 12 -I h 12 +{(I b ]2 + i c \2 -I d ]2 +if 12)- -}1g12} 

- ; ),2 sin 2& cos & cos~ {Re [,1 i (a*b + a* c) + f (c*g + b*g) + 3 ~3 (c*d + b*d) - 3 ; 3 (b*p. + c*p.) ]} 
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- {-lhin 2& sin& cos~ {Re [(a*d + b*e + f*h) + 2 (a*fl- d*fl + f*v + h*v) + ~3 (- b*f + b*v + e*f- e*v) 

+ ~3 (d*g- g*fl)]} + 1:1,2 sin (& + ~) {Re [Vi (a*e + g*h) + 3 ~3 (b*d + g*f)- 3 : 3 (b*f1 + g*v) 

(26) 

+ 4 ( 2e*g + 1d*f + 1d*v + ~ f*fl- {r<v) ]} + {- A2 cos(&- ~) {Re [{<a*d + b'e+ f*h) + 1(a*f1 + h*v) + 3 ~3 

X (b*v- b*f- e*f- e*v) + 3 : 3 (d*g- g*fl) + ~ (d*fl- f*v) ]} +¥cos (&- ~) {2 I g j2 +~(I d [2 -If 12) + { (I f11 2 - i v i2 l} · 

Making use of the recoil beam instead of the scattered beam, we obtain two new expressions 

QN(N,-c', N) = i-spMSNM*aN = ~ '-2 {1gl2 +{ ldl2 + lfl2 -lf1!2 -[vl2 + Re [a' (d- flo)- b* (e + f + v) 

+ e* ( ::f f + J3 v)- g* ( /r d -t : 3 f1) - f* ( h -1- + v) + h*v- d'fLJ}; QN(m, :',n) =~sin 2&sin (& + ~) [ 2 j a i2 

') . 2 2 2 2 2 J :A2 
+ i : b !2 + 3 1 e i2 - 9 I d 12 + 9 I f 12 - 2 I g !2 ·-- 2! h 12 - 9 i f1 ,2 + 9 i v !2 - 3 sin 2& cos (&+~) 

[ Jl/ T • 4 • I 2 • 4 * 1 f* 2 ·* v"T *h + 2 r· + 2 d* 2 • 
X Re 2 3 a b + 3 b g ' 3 V"3 e d + 3 V 3 e f1- 3 V 3 g - 3 V 3 g v - 3 g 9 f1 9 v - 9 d I 

(27) 
2 /T 1 2 2 ] :A2 [ • • ] R [ 1 • i • - 9 P-'v+JI 3 a'e+ 3 y;r-b'd-t 3 V3 b'P-+ 3 e•g -t- 3 cos(&-~)-sm2&sm(&+~) 2 e 3 (ac -a!L 

+ f*h- h*v + b'e)+ ;~ : 3 (e*f- b*f + g*fl) + 3 : 3 (e*v- b*v + 2d*g) + { (fv- d'[L)] +¥sin 2& sin (& + ~) ~ 

X•Re [f*i- d\<J+ ~[sin (&- ~)- 4- sin 2&cos (& + ~)]2Re [Vi (a*e + g*h) + 3 : ;3" (b*d + g*f + 2b"f1 + 2g'v) + } e*g 

+} (d*f + fl*v- f*fl-d*v) J + ¥-l cos (&-~)-{sin 2& sin (& + ~) ][ i (i d ;2 -1 f i2) + j 1 g !2 -} (I f11 2 - :V [2)]­

Simultaneous measurements of the polarizations of the scattered beam and the "recoil" beam after 
triple scattering, yield three further relations. 

The correlation function for the polarized beam has the form 

(28) 

where 

and one can find 

QNZ(m, P) N = -}sp MaNM' am Sp = ; ),21m {sin (& + ~)cos s-[ J/i (ae + gh*)- 3 : 3 (bf-'*- gv*) + { eg* 

+ {<N- ffl' -df*)- 3~3 (bd* + fg*) J +cos (&+~)sin [- 3 ~ 3 (b[L* + ef1')+4 (eg* + af* -av*-bg*-dh*-hf-'*) 

+{ (dv* -ffl* -4df*) ,;,(bd*-t-ed*)] +cos (&+~)cos .S [--} (af1*- hv* +ad* -1- be' -1- fh*) + .~- (ev*- gf-'*) 
3r3 3r3 

-3:3 (ef* + dg*)] +sin (&+~)sin& [ + (- gfl* +ad*+ be* + fh*- dfl*- fv* +be*)+ 3 ~3 (ef* + dg*)- v'! b·i'] 

+cos~ [--} (ap.*- hv*) + 3 ~:.r (ev'- gfl*) J -{ fl'~' sin~}, QNz (N ,P) n= {1,2 Im {; sin2& Vi (ba* + bfl' + gv' 

- gh'- ag*) +} (- af* + m* + bg* + eg' -dh*- dv'- ffl*- hP-'- 2af1' +be*+ 2df1* + fh*- 2fv* -- 2hv*) 

+ ~ (efl•- ed*- fg*- gv•- ej* + dg*) + V4 _ (efl*- gv• + ev* + gf!') + 2 _fg*] + sin2 & [· / ~3 (- ag* + bh* 
3 V3 3 3 3V 3 V · 

- bfl*- gv*) + ! (af*- av•- bg''- cg* + dh* + dv* + ffl* + h[L*) + 3 ~3 (ef*- dg*- ef1' + gv*) + 3 ~3 (c"'* + gfl* 

- ed*- fg*) + { (dfl'- fv') J + cos2 & [ ~ (ad'-be* -fh*) + ~ (afl• + hv*) + 3 : 3 (ef*- ev*- dg*- gfl*) 
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_./J.(ab"+gh")-~(cd*+fg")+~ (ctL"-gv")]}• QNZ(m,N)n=A3
2 sin2&sin(&+~)Im{- ,;_(ab"+gh") 

" 3 3 V3 3 V3 r 3 

- Vi- (bp." + cp.") + { (-at'+ av• + bg" + cg• -- dh* -hp.*) - (dv* + fp.*)} +A; sin 2.& cos(&+ ~) Im { V-} (2ag• 

- 2bh* -bv* -- cv*)+-} (ad*- at-<•- be*- hv*- fh*)- fv" + d;L* }- A2 ( ~ cos (&- ~)- {sin 2& sin (& + ~)] 

X Im [ + (- af" + a•1" + bg* + cg•- dh* + dv* + ftL"- hp.") + 3 ~3 (cp." + 2cd" + 2fg"- 4gv")- vi b'p.*] 

+ 1,2 [ ~ sin (&- ~)- f sin 2& cos (& + ~)] Im[-} (-ad* + ap." +be" + dp. • 

+ fh"- fv* + hv*)- 3 : 3 (cv•- 2dg* + 2cf* + 4g[L") + Jl { bv"]. 

(29) 

These same results can be obtained by using the expression for M given by Eq. (11). In this case, 
one finds, for example, 

Q N _ A2 + 2 8 2 + 2 C2 + A2 + .3._ 8 2 + ~ C2 + i_ D2 + !!._ £2 + .!_ p2 + _!_ a2 ...L _!_ H2 + .!_ K2 - 3 9 131 1)1 3 3 6 6 '6 6' 

N N ( • 2 • 2 "} Q P =2Re\AA1 + 3 BB1+ 9 CC1, 

QN(N,'t,N)=[AJ2+}JBJ2+ ~ JC[2+JA1J2+~JB112+ ~ [C1[2 

- i (I D [2 + IE 12) - ! ([ F 12 + I G [2 + I H [2 + I K 12). 

(30) 

The coefficients A, B, C, ... , are easily obtained from Eq. ( 11), substituting in it the explicit form 
of M given in (14) and the average values of the spin operator expressed interms of Eulerian angles; 
one finds 

1 A 
A=·6 SpM= 3 (a+d+p.), 

1 
A1 = 6 SpMaN = 

1 
B =~;SpMSN= = ), ~ [VI (c- b)+ ~ f + -} v J, 

= {1.[Vi(c- b)+} (f -·1)], B1 = ~ [(d- !L)- V3g]' 

C= i SpM ( SpSp+SKSK-; o;i)= C1 ={SpMaN(SpSp+SKSK-~Bik )= 

= ~}. [-}(a- d)+ : 3. g J, ={i}.[3 : 3 (c-b)-ff+h- }v], 

1 A {( 2 \ 2 . } A 1 2 · E =sSp M (crpSp- crKSK) = 4 a-d- V:rgfos 2.& + V3 (b+c)sm2& = 4 sin 2& V 3 (b+ c), (31) 

K = {sp M(cr¥SNSp- aKSNSK)= ;~{sin2&(- v+a+ Vig+ v~d)+ cos2&[V fc+ VI b-v -}u +h)]}. 

With these expressions for the coefficients, one can use Eq. (30) to obtain the previous results for the 
cross section, polarization and QN( N, T, N). 
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Thus, for given values of energy and angle, the results of double and triple scattering experiments can 
yield 11 independent relations among the parameters of the transition matrix in the case of elastic scat­
tering of neutrons against deuterons. One additional relation can be obtained from experiments on the 
scattering of protons against deuterons, since due to charge invariance, all the above results also apply 
to this case (if one only includes the electromagnetic interaction). 

As shown in the work of Smo:rodinskii and others, 5 the transition matrix is determined by as many real 
functions as there are variables in its most general formulation. Thus, if one carries out triple scattering 
experiments and obtains the above mentioned experimental data, it should be possible to carry out a phase 
shift analysis. 
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The interaction of two fixed nucleons in pseudoscalar meson theory with pseudovector coupling 
is considered. The principal part of the functional of the two-nucleon state is represented in 
the form of a product of single-nucleon functionals. Consideration is given only to the states 
without real mesons and with one real meson. A procedure is developed for reducing two-nu­
cleon renormalized matrix elements to single nucleon elements, which are then calculated by 
the method of Chew, Low, 1md Wick. The potential of order e-2R is calculated. It consists 
of two parts: one part is proportional to r4 (f is the interaction constant), and the other is a 
function of the phases of 1r meson scattering on nucleons. 

RECENTLY, Chew and Low1 and Wick2 considered the one-nucleon problem from a new point of view. 
Characteristic of their approach is the attempt to solve the problem without perturbation theory, and thus 
to deal only with renormalized quantities. 

In considering the two-nucleon problem in the region of nonrelativistic energies, it may be assumed 
that the meson clouds of the interacting nucleons conserve their individuality. 

Therefore, we may feel confident that in this energy region, quantities referring to two interacting 
nucleons will be expressed by single-nucleon quantities, so that the method of Chew, Low, and Wick may 
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ERRATA TO VOLUME 6 

Page Line 

643 16 from bottom 

690 8 from bottom 

5 from bottom 

809 9 from top 

973 unnumbered 
equation 

975 5 from bottom 

992 Eq. (18) 

Reade1 

where K = 1ra.2o - ... 

... sin [ -- ... 

.. . sin 21} lff ... 

••. ( 2 ·1 h . + .•• sm u 

s'- '· s ~ > ... C 1-' •; 1-LT !). 1-L'. nj.L-J.£ -

•.. of a particle by a nucleus •.• 

-2; 111 • • • 'TfT2 2, • • • 

Should Read 

where K = 1ra2ocp - .•. 

.•. sin a [- ... 

• .. sin2a[Vf ... 

...(s~ u + ... 

... C~~-_ll~,SJ.'<S'!IT(n) Os-1> 
X T(n) 

J,£'-1-" 

• .• of a particle in state a by a 
nucleus ..• 

\ 
-1/2Ji2 ••• 'Tt'T2 ••• 




