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The propagation of a cascade consisting of several types ,of particles in a medium composed 
of homogeneous layers Hi\ is considered. The layer boundaries may be mobile. The cascade 
particles collide with the particles of the medium and in the process are absorbed, scattered, 
and produce new particles. The functions wi\ describing the distribution of particles of each 
type according to position and velocity are found under the assumption that the particle distri­
bution functions vi\ in the layer Ri\ when the layer occupies the whole space are known. The 
functions wi\ are represented as infinite series of integrals which, in general, show a good 
convergence. The integrands are certain products of the functions vi\. 

IN the present article we shall make use of the notation and results of Ref. 1, in which a method of cal­
culating the functions Vij ( s, q, u, t, r, v) was given. The functions Vij determine the probabilities 
Vij drdv that a particle of a given type Aj will be found at the time t to possess radius vector between 
r and r + dr and velocity between v and v + dv if the cascade is initiated by a single particle appear­
ing with the velocity u at the time s and the point q. It has been assumed that the medium is filling 
the whole space and that its properties are independent of time and place. In Ref. 1 it has been assumed 
that all new particles of the cascade are produced at the moment of collision. In Ref. 2, an analogous 
function V describing a neutron cascade- a cascade consisting of particles of a single type which may 
be produced with a delay -was found by means of the same method. It is easy to combine the two cases 
and to consider a cascade consisting of n types of particles which may be produced with a delay. In that 
case, too, we shall assume the functions Vij to be known for the case of an infinite homogeneous medium. 
In the present, a method of solution of this problem will be given for the case of a multi-layer medium, 
i.e., a medium consisting of different homogeneous layers occupying adjoining regions Ri\ ( i\ = 1, 2 ... ) . 
Let E be the space of variables t, r, v, j. It consists of n 7-dimensional spaces Ej (j = 1, 2 ... n). 
We shall assume that the boundaries are varying with time t. Furthermore, for the sake of symmetry, 
we shall assume that they may depend also on j and v, i.e, that the Ri\ are arbitrary regions in E. 

The solution of this problem is important, for example, for the study of transient cosmic ray effects,3•4 

in the theory of nuclear reactors, 5 in calculations of radiation shielding,6 etc. The problem amounts to 
solving the Boltzmann linear integral equation of the type (1.15) or (1.16)* in a multi-layer medium and 
represents a generalization of an analogous problem in the theory of parabolic differential equations. 7•8 

*Here and in the following (1.15) denotes the formula (15) of Ref. 1, etc. 
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If we put P = (s, q, u, i) and Q = (t, r, v, j) then the functions Vij (s, q, u, t, r, v) can be written 
in an abbreviated form as V ( P, Q). We shall denote the function V ( P, Q ) by V ll. ( P, Q ) if the whole 
space is filled by the medium filling the region RA. We shall assume the latter functions to be given. We 
shall denote by W ( P, Q) the required function describing the cascade particle distribution in a multi­
layer medium, and by wll. ( P, Q) the expression of this function in the region RA. We shall also intro­
duce the auxiliary functions UA ( P, Q). The function ull. gives the particle distribution in the region RA 
if all other regions are filled with an ideally absorbing medium, so that any particle leaving RA disap­
pears immediately. Evidently, ull. ( P, Q) = 0 if P lies within the region RA. 

Before calculating the function wll. we shall solve an auxilliary problem. The functions V ( P, Q) 
give the particle distribution at the time t according to particle type A, position r and velocity v. It 
may be, however, required to solve an inverse problem of the particle distribution for a given value of a 
certain component of r or v according to the type Aj, time t, and the remaining components of r 
and v. In general, we can make the following substitution for the variables t, r, v, j in E: 

(1) 

where a is a 6-component variable, so that T and a are seven new variables and putting P* = ( T, a, j) 
we find the probability V* ( P, P*) da of finding a particle of the type Aj with a in the interval between 
a and a+ da for given values of j and T. Taking into account that the variable j varies in a discrete 
way we can see that, without any loss of generality, we have preserved its value carrying out the trans­
formation (1). 

Let K0 be the original particle of the cascade and K one of the cascade particles existing at the time 
t. It has been shown1 that corresponding to the latter particle is a chain C of particles connecting Ko 
and K. All points Q in E which correspond to the particles of the chain C at the time intervals be­
tween the corresponding collisions, form a certain curve C which will be called the cascade development 
curve. The points in E corresponding to collisions divide this line into a finite number of arcs B, the 
velocity v varying continuously and j remaining constant along each arc. Every arc lies completely in 
one of the spaces Ej. By virtue of (1.1): 

dt = t!!__ = dv . 
v 1-i(l,r,v)' 

clearly, a single development curve of a completely determined direction passes through every point of 
the spaces E and Ej Let Nj be a unit vector in Ej determining this direction. Let nj and Vj be 
unit vectors normal to the surfaces t = const and T = const in Ej· It is evident that 

Ni=(l,v, Fi)/VI+v2 +Fj, ni=(l,O,O) 

and that the components of the vector Vj are given by the sixth-order determinants obtained from the 
matrix 

(which has 6 rows and 7 columns), divided by the square root Elj of the sum of their squares. Taking it 
into account that the mean length of the arcs B is always finite in Ej and that at least in the vicinity of 
the points of intersection of the surfaces t = const and T = const every development line passes through 
both surfaces, we obtain V /Njnj = V /NjVjElj or, substituting for Nj, nj, Vj their values given above, we 
obtain the following expression for the required probability: 

v Fj{t, r, v) 
V* (P, P*) = V (P, Q) at i a r1 a vi I 

I 

Tcr Tcr Tcr ! ' 
(2) 

where all the variables t, r, v on the right-hand side of the equation should be expressed by T and a 
according to ( 1) ( i and j do not change). If, for example, we want to find the probability that one par­
ticle of the type Aj traverses the area between x, y, and x + dx, y + dy on the surface z = const with 
a velocity between v and v + dv within the time interval between t and t + dt then, according to Eq. 
(2) we have: 

v;i(s,q, u,t,r,v)dtdxdydv=Vii(s, q, u, t, r, v)vzdtdxdydv. (3) 
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Since the derivatives of the functions (1) with respect to T do not enter into Eq. (2), it is clear that in 
order to find the value of the function V* on a given surface T = const it is necessary to know the func­
tions (1) for that value of T only. 

Let RJL and R11 be two adjoining regions in E and let S/J.V be their common boundary surface, de­
composing into surfaces Slj11 in the spaces Ej. Let P* = (T, p, v, k) be a point on the surface SJlV, 
and FIJ. ( P) and G11 ( P) be two functions of P defined in RJL and RV respectively. We shall introduce 
the following notation: 

(4) 

where the integration is to be carried out over only those parts of the surfaces Slj11 where the vectors 
Nj, determining the direction of the development curves in Ej, are oriented from RfL into R11• If the 
function FIJ. ( P) gives the distribution of cascade particles in the region RJJ and G11 ( P) = ull. ( P, Q) 
then, according to Eq. (2) and to the definition of the function u\ it is evident that the product FIJ.UV [in 
the sense of (4)] gives the distribution of cascade particles in the region R11 , which are those of the par­
ticles from RIJ. which passed into R11 and the development curves of which lie totally in R11 • 

In the case when the surface f!P- 11 is the plane z = z0, we can put simply u = (t, x, y, v), and from 
Eq. (4) we obtain 

I co 

Ff1Uj(t,r,v)=~ ~ ~~~~~Fk('t,p,~)vzV~i('t,p,~,t,r,v)d'td~d"idvxdvydvz for p=(~, "'• z0). (5) 
k -oo 0 

We shall now pass to the solution of the main problem. Let a cascade originate in the point P of the 
region R". We shall say that a cascade particle, present at the time t and represented in E by a point 
Q, is of the m-th order when its development curve, going from P to Q, passes through m regions 
RA. If the curve traverses a certain region several times, the region contributes a corresponding num­
ber of times to the order of the particle. Let W~ ( P, Q) denote the required function wll. ( P, Q) under 
the complementary condition that only particles of the m -th order are considered. We have then 

But it is evident that 

and taking ( 4) into account, we obtain 

W"(P, Q) = ~ W~(P, Q). 
m-1 

for i. = x, 

for I. =1= x, 

W~+I (P, Q) = ~ W~ (P, p•) U>..(P•, P) (m =I, 2, ... ). 
f1 

(6) 

(7) 

(8) 

Equations (6), (7), and (8) make it possible to calculate wll. when ull. is known. The functions wll. are 
therefore obtained in the form of an infinite series of products of the type (4), i.e., integrals, the inte­
grands of which are certain products of the functions ull.. It should be noted that the sum (8) is to be ex­
tended only over those values of p. to which correspond regions Rfl adjoining to Rll.. 

If there are, for example, only two regions R0 and R' in the whole space and if the point P lies 
within R0, we have 

0 { 0 , {W?,U' 
Wm+1= w;,uo, Wm+I = o 

and, consequently, we obtain the following infinite series for wD and W': 

for odd m 
for even m 

W0 = U0 + U0U'U0 -j- U0U'U0U'U0 -j- ... , W' = U0U' -j- U0U'U0U' -j- U0U'U0U'U0U' + ... 
These yield immediately the integral equations for W0 and W': 

W0 = U0 + U0U'W0 , W' = U0U' + U0U'W'. (9) 

In order to find the functions ull. we shall denote by R ll. the region containing the whole space E 
outside RA. We shall assume that this region is filled with the same medium that fills Rll. and we shall 
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denote by UA and W A the functions U and W corresponding to that space for the given medium. In 
that case, however, the whole space is filled by a single homogeneous medium and the functions WA and 
W A coincide with the functions VA and VA representing vA. in RA. and R A. In this way we obtain 
for R0 = RA and R' = RA from Eq. (9) 

Putting UAUA =FA. we find 

V)...=V)...-F)...V\ F)...=P-PP. 

But from the second equation we obtain directly by integration 

F" = p _ y"A2 + yA.a + _ .. 
and substituting into the former equation, we obtain finally 

u)... = V"- v)...v)... + V)...2V)...- v~..av>. + ... 
The functions U\ therefore, have been found. 

(10) 

If we substitute (10) into (7) and (8), and the result into (6), we obtain the functions W in the form of a 
convergent infinite series, the terms of which are products of the various powers of the known functions 
VA and VA. All the products and powers should of course be understood in the sense of definition (4). 

If we consider, for example, the particles of a cosmic ray shower, penetrating a number of plates RA 
none of the particles being scattered backwards, then Eqs. (8) and (10) are reduced to: 

u). = { v). for 1. = x wA+l _ w). uA.H 
0 for /, =I= x ' m +l - m • 

Assuming K = 0 and taking into account Eqs. (6) and (7), we obtain the simple relation 

w). = V 0V1V 2 ••• v)._ 

We have assumed that the layers are homogeneous because in that case the functions V can be found. 
These have been assumed to be known. The above considerations are, however, valid when the layers are 
not homogeneous. 

Bearing in mind first, that integration in Eq. (4) is carried out only over those values of a for which 
the development curves are directed from Rl-' into R" and, second, that a sharp return of the develop­
ment curves is unlikely in practice and, third, that the cascade particles are often rapidly absorbed, it 
can be shown that, in general, the found infinite series converge well. 

It should be noted that the products (4) are difficult to calculate since the integrands are complicated 
functions and the integrals sixtuple. In a number of important cases they can, nevertheless, be markedly 
simplified, namely: 

1. If the medium RA. is a layer of a thickness on the order of the particle mean free path then, instead 
of UA we can simply take the expression (1.23) for m = 1 and V0 =A. Calculation of the product (4) is 
then reduced to a double integration (owing to the presence of a-electrons). 

2. If the layers are thick, then it is possible to use expressions of the type (1.59) instead of VI-' and 
v" in calculating V~-'V". Taking it into account that a quadratic function of r stands in the exponent of 
the latter expression it becomes immediately clear that if the surface S~" is cylindrical, one integration 
is reduced to the Poisson integral, and if the surface is a plane two integrations are reduced to that type. 

3. As a further approximation in the calculation of the products VI-'V where VI-' and V" are given 
by (1.59) we can substitute for €, €', €" and ~~, 6" . .. in v" their values averaged in some sense 
over u. We can, for instance, take the average values over the surface s~"· calculating by means of 
VI-' the probability of various values of u on this surface. The both factors in VI-' and yv will then 
become exponential functions of quadratic functions of v, so that if the surface sP.-V is independent of 
u, as it is practically always the case, then the integration over u is reduced to fue Poisson integral or 
to the Gauss function, and the product will be represented by a double integral. 

Unitingcases(2) and (3) we obtain that in a multi-layer medium with plane boundaries the products 
VI-'V" are expressed by single integrals which are easy to calculate with the help of computing machines. 

The author regards it as a pleasant duty to express his deep gratitude to Academician N. N. Bogoliubov 
for a valuable discussion of the results, and to Prof. D. D. Ivanenko for his interest in the work. 
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A cascade is considered to consist of several types of particles moving in a generally inhomo­
geneous medium varying with time. The particles collide with the particles of the medium and 
in this process are absorbed, scattered, and produce new cascade particles. The functions, 
determining the distribution of the particles of each type in cascades initiated by a single par­
ticle of a given type appearing at a given time with known initial position and velocity, are as­
sumed to be known. By means of these functions, the probability of the joint presence of a 
given number of cascade particles at a given instant in a given cell of the particle type-posi­
tion-velocity space is fow1d. The detecting probability is calculated for detectors having a 
sensitivity dependent upon the type and velocity of particles as well as upon their place and 
time of incidence. 

LET Aj ( j = 1, 2, ... n) represent n various types of particles forming a cascade initiated by a single 
particle of a given type Ai with a given velocity u, which has appeared at the instant s at a given 
point q. Let 

V (P, Q) dQ (P = (s, q, u, i), Q = (t, r, v, j), dQ = drdv) (1) 

be the probability that at the time t one particle of this cascade, of the type Aj has the radius vector 
between r and r + dr and velocity between v and v + dv. This probability was found for the case of 
a homogeneous 1 and of a multi-layer2 medium. In the following we shall assume that the functions V are 
known for any inhomogeneous and time-varying· medium without referring to their actual expressions. 
Using the notation and results of Refs. 1 and 2 we shall solve several generalized problems concerning 
the correlations in particle distribution. 

1. Let L be a natural number. We shall find the probability 

(2) 

that there are K£ particles of the type Aj£ and with velocity between V£ and V£ + dv£ having at the in­
stants t£ radius vector between r£ and r£ + dr£ respectively. 


