
BASIS OF RELATIVISTIC QUANTUM MECHANICS. I. 

[Pi,' hL = 0, [f~, hL = 0, rr~, hL = 0. 

Then the metric matrix h, which commutes with all the operators of the complete set, must also be 
diagonal. 
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(52) 

It may appear strange that, for example, the operators PA. and h commute in one but not in another of 
two equivalent representations. This occurs because the transformation for h is different from that for 
all the other operators: 

Q = VQ', n· = Q'*V*, (53) 
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A ferrite is considered as a lattice of classical magnetic dipoles submerged in a dielectric 
continuum. An analysis of the electron conductivity of such a model shows that the line ln 
A. "' T-1 (A. is the electrical conductivity) must have a break at the Curie point, in agreement 
with experiment, as the activation energy in the ferromagnetic region decreases. 

KoMAR and Kliushin1 detected a break in the line ln A. = f(T-1) (A. is electrical conductivity) for ferrites 
in the transition through the Curie point, where the activation energy in the ferromagnetic region is less 
than in the paramagnetic region. The fact that the break is observed at precisely the Curie point indicates 
a connection between this phenomenon and the presence of spontaneous magnetization. We show that the 
existence of this break finds a simple explanation on the basis of a theory that takes into account the in­
teraction of the conduction electrons and the electrons of the unoccupied shells of the magnetic ions.2 

Ferrites have an electron conductivity due to the stoichiometric excess of metal3 or to the presence of 
impurities.4 The problem of electron motion in a lattice of nonmagnetic ionic crystals has already been 
solved under the assumption that the ion lattice can be replaced by a dielectric continuum (polaron theory, 
Refs. 5 and 6). It is natural to use this method for ferrites, which essentially are also ionic crystals. 
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In order to take their magnetic properties into account, let us assume that spins, located in a certain 
spatial lattice so that they can be separated into two magnetic sublattices, are "impregnated" in the con­
tinuum. The sublattice magnetizations are anti-parallel and cancel each other incompletely. As in the 
Neel'r theory, let us assume that there is only one kind of magnetic ion, i.e., one kind of spin. 

The Hamiltonian of a ferrite containing one "excess" conduction electron is 

(1) 

where H,t is the lattice Hamiltonian and Hi the Hamiltonian of electron interaction with the lattice. 
To the accuracy of terms of the same order as the anharmonic terms, H,t is composed additively of 

the Hamiltonian of the optical vibrations HK and of the mutual spin energy of the lattice He. Acoustic 
vibrations cannot be taken into account since it is known that the electrons in ionic crystals are scattered 
principally by optical vibrations. In nonmagnetic ionic crystals, Hi will be composed of the periodic po­
tential V0(r) and of the interaction with the inertial polarization HiK (Refs. 5 and 6) (r is the electron 
coordinate). Interaction of the electron with the spin of the system is added thereto in ferrites. 

Choosing the separated magnetic axis as the z axis, let us assume as the periodic part of this inter­
action 

where Sz is the z component of the electron spin operator, 71 1 and 712 are the absolute values of the 
relative magnetizations of the first and second sublattices; W(r) is a periodic function. 

The Hamiltonian ( 1) becomes 

(2) 

( 3) 

He can be discarded as a constant. The explicit forms of HK and HiK are not required. The expression 
(3) differs from the Hamiltonian of the polaron problem only in the addition of 2szV1 (r) to the electron 
periodic potential. 

Let us be limited to the case of weak electron coupling to the polarization vibrations and, consequently, 
let us consider HiK as a perturbation. Separating the optical variables, we arrive at the problem of an 
electron in a periodic field with the Hamiltonian 

( 4) 

The spin variable is evidently separated out, which would lead to the replacement of Sz by the electron 
spin quantum number a (a = ± 1/2). Let us consider the electron energy spectrum. In order for the 
crystal to have ferrite properties, i.e., for it to have non-equivalent magnetic sublattices, it must be 
assumed that the sites R and R + h of the first and second sublattices are crystallographically non­
equivalent. (For example, this is attained in the spinel lattice because of the dissimilar coordinations of 
these sites by the oxygen ions). The non-equivalence is retained even if the added term 2aV1 is neglected. 
Consequently, V0 and V1 have the same periodicity. Therefore, the energy spectrum will always have a 
band structure. The presence of the added term only introduces a small quantitative increment.* Actually, 
the estimate assumed for V 1 in Ref. 2 for metals can be retained: V1 ,.., 0.2- 0.5 ev. The width of the 
permitted band .t.E is of the order of several ev. Consequently, the increments will be of the order of 
V1/ .t.E. Let us expand the electron energy in this quantity: 

Ea (K) = £<0) (K) + 2cr£!1) (K) + ... ( 5) 

(K is the quasi-wave vector). Using also the effective-mass method, we finally obtain 

Ea (K) = 2crs + n2K 2 I 2p., r- = 1i2 I (d2 E<o) I dK2 )o. (6) 

*The sublattice sites in antiferromagnetics must be crystallographically equivalent so that their mag­
netizations cancel. The magnetic ions located therein will create identical force fields for an electron if 
Hie is not taken into account. The force fields of the magnetic ions of different sublattices are dif­
ferent when Hie is taken into account. Consequently, Vo + 2aV1 will have "twice" the period of V0• This 
leads to the splitting of each of the permitted bands into two with a transition from the paramagnetic 
region into a region below the Curie point, as Slater8 already has remarked. 
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where iJ. is the effective mass; E = E (1) ( 0). For simplicity, it is assumed that K = 0 corresponds to 
the minimum energy in the conduction band and that the effective mass is isotropic; the energy is meas­
ured from the position of the bottom of the conduction band in the paramagnetic region ( V 1 = 0), in this 
connection, the constant E (o) ( 0) is discarded; the term proportional to d2 E (1) I dK2 will be of higher 
order since h2K2/2iJ.b.E is also small. Without loss of generality, it can be considered that E > 0. In the 
opposite case, the parts of the "right" and "left" conduction electrons must be interchanged. 

As is seen from (6), the bottom of the "right" electron band is raised by E ~ 0.2 ev and the "left" is 
lowered by the same quantity when the transition is made from the paramagnetic into the ferromagnetic 
region. 

It should be noted that we at once obtain the energy spectrum (6) in the Sommerfeld approximation, 
where 

Vo ~ o;;-1 ~ Vodr, vl __.. o;;-1 ~ Vldr, E = (7)1- '~b) o;;-1 ~ w dr, 

and iJ. is replaced by the actual mass m (the integrals are taken over the volume n0 of the elementary 
cell). 

In order to determine the chemical potential of the electron gas ~. let us assume that the conductivity 
is caused by a univalent metal impurity. We will have the donor level at a distance b.E' below the bottom 
of the conduction band. The intrinsic conductivity can be considered insignificant. The potential !; is 
determined according to Ref. 9 from the equation ( n0 is donor concentration) 

[ -A£'-1: ]-1 1 \ ( 1;.21(2) 2 ~ (~-20"e) 
no= no exp kT +I + 27t2.) exp - 2tJ.kT K dK 7 exp ,---w- ' 

from which we obtain 

1: _ 'lz '12 ( 7t )'/, ( ~ 20'e)-'lz ( A£' ) 
exp kT -no (2h) 2tJ.kT ...:..J exp kT exp - 2kT • 

" 
For the ferromagnetic region E » kT and, consequently, exp (- E /kT) can be neglected in comparison 
with exp ( E /kT). We then obtain for the electron concentration n = nr + n£ (the subscripts r and £ re­
fer to "right" and "left" electrons, respectively): 

n = nr + n1 = V2n:/'(2nT'" (2p.kT/-.:)'4 exp (-t..E'j2kT) 

in the paramagnetic region ( E = 0 ) , 

_ _ 1 {, ( 2"')-'lz ( 2tJ.kT)'f, ( l:J.E'- e) 0 n - n1 - n0 "' ,-1t- exp - ~ , n, = 

below the Curie point. The electron mobilities above and below the Curie point will be approximately 
identical since we do not take the scattering caused by the term ( Hie - U ) into account. 

(7) 

(8) 

We see from (7) and (8) that the transition from the paramagnetic into the ferromagnetic region will be 
accompanied by a break* in the line ln A. ~ T-1, where the slope in the second case will be smaller (inde­
pendently of the sign of E). Hence, the reason for the break is the lowering of the bottom of the band for 
conduction electrons of one of the two spin orientations. Experimental values of the activation energy 
usually do not exceed 0.5 ev. The slope is halved, roughly, for E ~ 0.2 ev, in full agreement with experi­
ment. 

The theory leads to a curious consequence. We obtain for the ratio of the concentrations nr and n£ 

(n,j n1) = exp (- 2E I kT), 

i.e., electrons of just one spin orientation will exist almost exclusively in the conduction band below the 
Curie point. 

For antiferromagnetics ( 71 1 = 712 ) E = 0, i.e., if the reason cited for the break is unique, the break 
should be absent in this case, at least, for the model chosen. 

In conclusion, I take this opportunity to express my thanks to Prof. E. I. Kondorskii for reviewing the 
work and for discussions. 

*The mobilities in ionic crystals depend exponentially on 11 w0 /kT, where w0 is the limiting fre ... 
quency. This factor can be considered included in exp (- b.E' /2kT). 
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The propagation of a cascade consisting of several types ,of particles in a medium composed 
of homogeneous layers Hi\ is considered. The layer boundaries may be mobile. The cascade 
particles collide with the particles of the medium and in the process are absorbed, scattered, 
and produce new particles. The functions wi\ describing the distribution of particles of each 
type according to position and velocity are found under the assumption that the particle distri­
bution functions vi\ in the layer Ri\ when the layer occupies the whole space are known. The 
functions wi\ are represented as infinite series of integrals which, in general, show a good 
convergence. The integrands are certain products of the functions vi\. 

IN the present article we shall make use of the notation and results of Ref. 1, in which a method of cal­
culating the functions Vij ( s, q, u, t, r, v) was given. The functions Vij determine the probabilities 
Vij drdv that a particle of a given type Aj will be found at the time t to possess radius vector between 
r and r + dr and velocity between v and v + dv if the cascade is initiated by a single particle appear­
ing with the velocity u at the time s and the point q. It has been assumed that the medium is filling 
the whole space and that its properties are independent of time and place. In Ref. 1 it has been assumed 
that all new particles of the cascade are produced at the moment of collision. In Ref. 2, an analogous 
function V describing a neutron cascade- a cascade consisting of particles of a single type which may 
be produced with a delay -was found by means of the same method. It is easy to combine the two cases 
and to consider a cascade consisting of n types of particles which may be produced with a delay. In that 
case, too, we shall assume the functions Vij to be known for the case of an infinite homogeneous medium. 
In the present, a method of solution of this problem will be given for the case of a multi-layer medium, 
i.e., a medium consisting of different homogeneous layers occupying adjoining regions Ri\ ( i\ = 1, 2 ... ) . 
Let E be the space of variables t, r, v, j. It consists of n 7-dimensional spaces Ej (j = 1, 2 ... n). 
We shall assume that the boundaries are varying with time t. Furthermore, for the sake of symmetry, 
we shall assume that they may depend also on j and v, i.e, that the Ri\ are arbitrary regions in E. 

The solution of this problem is important, for example, for the study of transient cosmic ray effects,3•4 

in the theory of nuclear reactors, 5 in calculations of radiation shielding,6 etc. The problem amounts to 
solving the Boltzmann linear integral equation of the type (1.15) or (1.16)* in a multi-layer medium and 
represents a generalization of an analogous problem in the theory of parabolic differential equations. 7•8 

*Here and in the following (1.15) denotes the formula (15) of Ref. 1, etc. 


