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uum due to the distortion of the wave function. This correction is determined by means of the formula 

00 y 00 y 

D.EL =- Eo~a2 [4 <~~> + (4;)2 ~p(y)dy~p(x)x4dx- (~:)"~p(y) ~~ (~p(x)x4 dx)2], 
0 0 0 0 0 

(8) 

where EoL is the electromagnetic part of the Lamb shift. 
In formula (8) the first term takes into account the change in the normalization ~N/N = -~n/a2 and 

yields -0.006 Me/sec; the second and third terms take into account the distortion of the wave function. 
The last part depends essentially on the form of the charge distribution inside the proton; its magnitude, 
however, does not exceed ~E = -0.012 Me/sec (for the charged sphere) and, consequently, lies beyond 
the range of the present experiment.6 

Thus taking into account the volume of the proton reduces the Lamb-shift discrepany between theory 
and experiment from 0.6 to 0.5 Me/sec. It will be possible to draw further conclusions about the effect 
of the structure of the elementary particles on the Lamb shift after calculating electromagnetic proc­
esses of the fifth order and improving the accuracy of experiment. We are going to apply an analogous 
method to the calculation of the correction to the hyperfine structure due to the volume of the proton. 

In conclusion I consider it my duty to express gratitude to Professor D. D. Ivanenko for constant at­
tention to the work and for a discussion of the results. 
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BELEN'KII1 calculated the distribution function of particles with respect to energy and angle at cas­
cade shower maximum without assuming small deflection angles. The scattering, however, was con­
sidered to be mutliple. In the following we shall drop this limitation. We can then write the equation for 
P (E, .'} ), integrated over the depth of shower development with boundary conditions corresponding to a 
single primary electron of energy Eo incident vertically upon the boundary of the material layer at 
t = 0, in the following form: 

1 8(E E) 8(l .&) .&- N(E0 ,E,&) + aN(£0 , E,&) 
- 2"' 0 - - cos cos - q E q aE 

Xmax 2n 

+n ~ ~ P(E0,E,.&')-P(E0,E,.&)lf(2sint)sinxdxd'f', 
0 0 

00 

N (E0 , E, .&)= ~ P (£0 , E, .&) dE. 
E 

(1) 

Here q = 2.29 and P (E, .'}) is the required distribution function of electrons with respect to energy E 
and angle ,'} . The angle ,'}' is determined by the equation 
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cos&' =cos & cos x +sin & sin x cos 'P· (2) 

where n is the number of scattering nuclei in 1 cm3 of matter, f (2 sin (x/2)) is the transverse cross­
section for Rutherford scattering, and Xmax is an angle depending on the energy and on the scattering 
medium. We neglect ionization losses and, therefore, our considerations are valid for energies E > {3. 

We shall seek the solution of Eq. ( 1) in the form of a series of Legendre polynomials: 

00 2n+1 
N (E0 , E, &) = ~ 9n (E0 , E) Pn (cos&) - 2-. (3) 

n-o 

Substituting ( 3) into ( 1) and using the addition theorem for Legendre polynomials in transforming the in­
tegral term in ( 1 ), we obtain 

- o (Eo- E) I 27t = q'fn (Eo, E) IE -1- (q- Kn (E)) ih(n (Eo, E) I iJE; 

X max 

Kn(E) = 2""n ~ fPn(c:osx)-I] f(2sin ~)sinxdx. ( 4) 
0 

Using the explicit expression for the function f, 1 using the expansion of Legendre polynomials in terms 
of powers of sin (x/2 ), and taking into account screening and the finite dimensions of the nucleus1 we 
obtain, finally, the following expression: 

K (E)= (Ek)2(- ( +I)+~, (-I)k (n+k).' (7.33l0_3mc2 z•;,)2k-2 _1_ [(I8Iz-Y.')4k-4 -Il} 
n 2£ n n .LJ (n-k)!(k!)'(2k-2) 2 E LR · 

k~2 

(5) 

where LR = 2ln ( 181 z-1/ 3 ), m is the electronic mass and Z the atomic number. The sum in Eq. ( 5) 
vanishes for n < k. 

The solution of Eq. ( 4 ), is 

Fe 

'Pn (Eo. E)= 2~ (q- Kn (Eo)fl exp [~ 1· (q- Kn (E')f1 dE']. (6) 
E 

Expressions ( 3 ), ( 5 ), and ( 6) represent the solution of our problem. They determine the energy and an­
gular distribtuion function of electrons. 

The explicit expressions for the first few functions <Pn are: 

'Po (Eo, E) = J ; ( 2P2)-Y, ( 2P•)-Y, 'P1 (Eo. E) '=Eo I+ £2 I -1- £2 I qE; 
0 

E E _ Eo (2 + 6P21E" -b./E')1•5P'i!J.(2 + 6P•;E~ + f:./E~) I.sP'i!J. 

'P2 ( 0 ' ) - qE (1 + 6P2!~- 37.P2;E~) '4(1 + 6P•;E2 - 37.P2! £4)'1:. (2 + 6P2;E~- b.jE~)l.sp>ftJ. 

Ek 
P=-· 

2q'la ' 

( 7) 

The functions <Pn can be calculated in an analogous way for n > 2. Comparison with the values <PnL 
calculated in the Landau approximation shows that for n = 0 and n = 1 <Pn = <PnL. For n ~ 2 the de­
pendence of <Pn and <Pn.L on Eo and E is different. Moreover, for n ~ 2, <Pn depends strongly on the 
atomic number Z. 

Using the distribution functions ( 3) and ( 7) we can find expressions for cos ,'}N and cos2 -itN. In view 
of the orthogonality of Legendre polynomials, these are determined by the first three terms of series ( 3 ) • 
Since <Pn = <PnL for n = 0, 1 the expressions for ~~os {}N coincide with cos ,'}NL obtained in Ref. 1. 
For the mean square we obtain the following expression: 

cos2 &N (Eo •. E) = 1l3+2'f2 (Eo. E) I 3'fo (Eo, E), 

where cp0 and C/-2 (E 0, E ) are given by Eq. ( 7). 
For E0 -- oo we have 

1 2 (2 + 6P2 !£2 -b.'/£2)1 •5P'/!J. · 
cos• &N (E) = 3 -1- 3 _(_1_+_6_P_•;_£_2. -~3cxc_P~•-tE:.::•:,)Y..,.-(~2:::..+=.6-'-P-2-,E-2+-b.-i-E2...,)1:-:'5:-::~:;;;-;-~~!J. 
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In lead ( Z = 82) the ratio cos2 -3-N/ cos2-ll-NL equals 0.99 and 0.98 for E = 3 x lOT ev and 1.5 x 107 ev re­
spectively. 

1S. Z. Belen'kii, JlaBHHHbie rrpoQeccbl B KOCMH'lecKHx Jiyqax (Cascade Processes in Cosmic Rays), Gos­
tekhizdat, 1948. 
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THE elastic scattering of both Dirac and spinless particles by a fixed force center was investigated in 
Refs.l to 4 using damping theory. We calculate below, using damping theory, the polarization resulting 
from elastic scattering of Dirac particles. 

The fundamental integral equation of damping theory which determines the scattering amplitude 
f~, = f~, (k') and is relevant in a discussion of polarization phenomena has the following form (we use the 
notation of Ref. 3 ): 

( 1) 

Here E = ctiK is the total energy of the particle and Vk'k" is the Fourier component of the potential 
V (r). 

We shall restrict ourselves to calculating the polarization resulting from elastic scattering of Dirac 
particles by a delta-function potential V (r) = V0c5 (r ), Vk'k" = V0• In that case we have from formulas 
( 5) of Ref. 3: 

where 

I+ • ~ i 
bs' bs" = LJ hs'•"• . 

1=1,2 

( 2) 

1 1 ( k ) I " i(cp" cpl) I " h., •. = 2 \1 + ; rcos a.~ coso •. + e - sin a.~ sin o •• J h;~.· = ; ( 1- ~) S 1 S" [cos 6~, cos s;. + ei(cp"-<P') sin 6~~ sin a;.]. 

We seek a solution of integral equation ( 1) of the form ( s' = 1, - 1 ): 

(3) 

Taking into account the orthogonality condition for h~'s" [see Eq. (31) of Ref. 3] we obtain for Et and 
E2 fromEqs. (1)-(3): 

1 +·a , a1.2 = 4::c" .. k (K +k0 ). 
I 1,2 " n 

(4) 

From Eqs. ( 3) and ( 4) we obtain for the amplitudes f~, of the first scattering 

I 1 61 1 1 • 61 • 

f1 = 2 [a1e1 + a2e2 ] cos 2/1 - 2 [a1e1 - a 2e2 ] e-1<P sm T f _1 , 

I 1 • 61 1 • 1 6' 
f-1 = 2 [a1e1 - a2e2] sm 2 /1 + 2 [a1e1 + a2e2 ] e-•<P cosT f -~> (5) 


