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has changed substantially (the maximum has disappeared). The existence of the maximum in the curve 
p (T) and its lo"cation as a function of temperature is determined by the form of the temperature depend­
ence of 6-R/6-H and R; a change in the temperature dependence of 6-R/6-H and R shifts the maximum 
towards lower temperatures, or obliterates the maximum, or emphasizes it. It therefore follows that the 
increase in p with decreasing temperatures, first observed in Ref. 1, is not of great significance. The 
important factor in the phenomenon under discussion is the existence of a "residual" galvanomagnetic ef­
fect at oo K due to paramagnetism. 

Besides the 42o/o Ni, 58% Fe alloy we have investigated pure nickel, iron-nickel alloys containing 50% 
and 78% Ni, copper-nickel alloys containing 20% and 25% Cu, and a 23% Mn, 77% Ni alloy (in a hardened, 
non-ordered state). With the exception of Ni and permalloy ( 78% Ni, 22% Fe) in which p is very small 
at low temperatures, we have obtained for all the alloys curves very similar to those in Fig. 2. There­
fore, contrary to Smith, one may conclude that the phenomenon in question is not peculiar to the 42% Ni, 
58% Fe alloy; it also occurs in certain other ferromagnetic alloys. We give below values of p measured 
by us at liquid helium temperature in unannealed Ni-Fe and Cu-Ni alloys and in a hardened Mn-Ni alloy. 

Alloy p X 108 

42% Ni, 58% Fe 31.6 
50% Ni, 50% Fe 15.6 
20% Cu, 80% Ni 25.5 
25% Cu, 75% Ni 11.6 
23% Mn, 77% Ni 23.6 

The existence of the "residual" galvanomagnetic effect due to paramagnetism at oo K in other ferro­
magnetic alloys beside the 42% Ni, 58% Fe alloy raises doubts as to the validity of the explanation given 
in Ref. 1. We believe that the existence of this effect is connected with the influence of structure imper­
fections on the exchange interaction. 

We take this opportunity to express appreciation to A. J. Shalnikov for his advice and interest in this 
work. 

1J. Smith, Physica 17, 612 (1951 ). 
2c. Gorter, J. Phys. Rad. 12, 279 (1951). 

Translated by A. Bincer 
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BIBERMAN1 suggested a theory for the diffusion of resonance radiation, which takes account of the 
possibility of changing the photon frequency in each reradiation event. It was assumed that the mean free 
time of a photon is small compared to the duration of the excited state. The integral equation obtained 
was solved numerically for various stationary problems. Later a similar equation was obtained by Hol­
stein.2 In solving the nonstationary problem, Holstein was interested only in the first eigenfunction of the 
equation, and obtained it using the Rayleigh-Ritz method. 

In the present note it is shown that by maintaining Biberman's assumptions and treating the diffusion of 
radiation in an infinite medium, one can obtain an analytic expression for the Green's function f (r, t) 
of this problem. 
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In this case f (r, t) dV is the probability that at time t there is an excited atom in the neighborhood 
of r, if at the initial time (t = 0) there existed only one excited atom and it was located at r = 0. For 
a homogeneous medium f(r, t) = f(r, t), where r is the magnitude of r. The desired Green's function 
must satisfy the equation 

(1) 

which has been investigated by Biberman and Holstein1•2 for the initial condition f (r, t) = c5 (r) at t = 0. 
The notation in Eq. ( 1) is the following: T is the mean lifetime of the excited atom, a is the probability 
of a damping collision, v is the photon frequency, and Ev and kv characterize the radiation and absorp­
tion line shapes, respectively. 

The use of an elegant transformation suggested by Ambartsumian3 brings Eq. ( 1) into the form 

<X>"' 

oA~; I)=~~ ~svkvEi(kvlr-r1 I)A{r1 , t)dvdrl-(f+cr)A(r, t) ( 2) 
-<X> 0 

with the initial condition 

A (r, t) = o (r) j 2;; f9r t = 0, 

where 

... 
A (r, t) = ~rlf(rl> t)dr 1 ,f(r, t) = -+~t· I) . ( 3) 

Here Ei is the exponential integral function. 
Equation ( 2) can be solved by Fourier transformation. We finally obtain, using ( 3 ), 

e-1(1/T+a) 0 { '!' . [ ( I r ) ] } f (r, t) =- (2rr)2r a, ~ e-•pr exp -;rp J s,kv tan·• ~ dv - I dp + 2 .. d3(r) • 
-<X> 0 

Let Ev = c5 (v), and kv = k be a constant, corresponding to diffusion without a frequency change. In 
this case 

<X> 

~. svkv tan·• )!_ dv - k tan·' P 
.) kv - k' 
0 

Further calculation of Eq. ( 4) must be performed numerically, although by using known methods it is 
not difficult to obtain an asymptotic expression for f ( r, t) in the form 

Thus in the present case of diffusion of radiation, the first approximation is similar to diffusion of 
particles. This similarity has already been noted by Compton.4 

( 5) 

As a second example, let us consider the spectroscopically important problem of the dispersion shape 
of a spectral line 

00 

kv=i+(v~ovo)'/y2 ·; Sv=kv ~~kvdV, 
0 

where ko is the absorption coefficient for the frequency v0 corresponding to the center of the spectral 
line, and 'Y is the line half-width. 

It can be shown that 

.!_Cs.,kvtan·•_kl!_dv=I-_1_{V.,iJ['!'J,1 (k0 ·, p)·+'!'J (k· p)]J_k tan·• <p,(ko;p)-Yp}· (p'-0) 
p ) v p ~ '2 O• ' o 'Pdko; p)- V p ' -? ' 

0 
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where 

1l1 (ko; P) = (l1k~ + P2 + ko)'"; tf12 (ko; p) = (Vk~ + P2 - ko)'1'. 

The asymptotic expression analogous to ( 5) now becomes 

where 

e-at a .& 00 ( .& \ 
f (r, t)'""'- - 2 -;;----,--I exp -2 ,r- xj sin x2dx 

1t r vr r 12 J y r 
0 

__ e-at _!___ f _!_. /r _!____ ( .&• • .&2 ' , a [ 2 ( .& ) , 2 ( .& )]1 
- 2rr:r ar 1 .& v 2rr: ar \cos r - Sin r) -r- ar c y r -,- s Vr f ' 

11=--==-
31:" V2k0 ' 

X X 

S (x) = }- ('sin t2dt, C (x) = }., I cos t 2dt 
r 2rr: J r .orr: J 

0 0 

is the Fresnel integral. It follows from ( 6 ) that for large optical path lengths 

f(r, t)=(4..-;)-'1,(t/"= Vk0r)e-crt ;r~. 
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(6) 

( 7) 

Comparing ( 5) and ( 7) we see that the function for diffusion with redistribution of the photon frequen­
cies decreases much slower than the other. A similar result can be obtained also for the Doppler shape 
of a spectral line. This is related to the slow decrease of the kernel of the integra-differential equation 
( 1 ), as has been pointed out by Biberman.1 

We note further that Ambartsumian's transformation makes it possible to obtain an analytic expres­
sion for the Green's function in the problem of diffusion of radiation if one accounts for the motion of the 
atoms. 

In conclusion I express my gratitude to L. M. Biberman for his direction in performing the present 
work. 

1 L. M. Biberman, J. Exptl. Theoret. Phys. (U.S.S.R.) 17,416 (1947). 
2 T. Holstein, Phys. Rev. 72, 1212 (1947). 
3v. A. Ambartsumian, Bulletin of Erevan Astronomical Observatory, No.6, 3 (1945 ). 
4K. T. Compton, Phys. Rev. 20, 283 ( 1922 ). 

Translated by E. J. Saletan 
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RECENT experiments1 on the scattering of electrons on protons show that the rms radius of the electric 
charge distribution in the proton is (0.77 ± 0.10) x 10-13 em, whereas the rms radius of the neutron is 
possibly smaller.2•3 This leads to a reduction of the binding energy of the electron in atoms, i.e., to a 
correction to the Lamb shift. In the calculation of a similar effect, one may confine oneself to the inves­
tigation of the nonrelativistic problem, taking into account additionally the distortions of the electronic 
wave functions, since the corrections due to these are not large in the cases -of interest to us -of hydro­
gen and deuterium4•5 for which experimental data6 exist. 


