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though relativistically invariant, is not Larmor invariant. Such a formulation is possible only in the 
framework of a Larmor invariant theory which includes magnetic charges (Kottler's formulas ).1 

Recently Ohmura2 has shown that magnetic charges must be considered to achieve stability for the 
classical electron. 
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The wave equations for a boson field, invariant under the Larmor transformation, can be written as 
follows3•4 

(in the general case tf;+ = -itf;*Rn, where Rn = n;\R/v n~ = 1). 
In this theory Larmor conjugation is accomplished by means of the matrix y 5 = R5y 5: 

( 1) 

( 2) 

(3) 

Equations ( 1) are Larmor invariant because [y5 'YJJ.] = 0 and y 5 =I. This is not the case in Kem­
mer's theory where the kinematic matrices are the (3JJ. -the "halves" of the 'YJJ.: 

(4) 

Invariance of the ( 1)- ( 2) system under the transformation ( 3) leads to the interesting fact, pointed 
out in Ref. 4, that the wave equations can be deduced from two different Larmor invariant Lagrangians, 
a scalar L and a pseudoscalar L, 

In actuality one apparently has to form a linear combination of the two and choose the action in the 
form 

( 5) 

(6) 

The invariance under transformation ( 3) is connected with the intrinsically five-dimensional character 
of our space (yJJ. and y 5 form a five dimensional representation of the Dirac algebra). Therefore it is 
logically unavoidable to require that both classical and quantum field theory be Larmor invariant. 

The extension of these conclusions to the theory of spinor fields does not present any difficulties and 
requires merely a slight development of existing methods similar, for example, to those employed in 
Ref. 5. 
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2 T. Ohmura, Progr. Theor. Phys. 16, 684, 684 (1956). 
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ELECTRON spin paramagnetic resonance has recently been observed in various metals .1 The theory of 
the resonance has also been published.2•3 The theory indicates that diffusion of conduction electrons into 
the depth of the metal plays an important part in the effect. The diffusion causes the attenuation of elec-
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tromagnetic fields in the metal to be much less at resonance than it is away from resonance. Thin films 
are thus selectively transparent. 

The question arises, whether paramagnetic resonance and selective transparency are possible in su­
perconductors. Since the superconducting electrons do not diffuse, one must presumably consider only 
the normal electrons. Then the difference in behavior of a metal in the super conducting state will arise 
only from the fact that the constant magnetic field is attenuated with depth (H = H0e-z/oo). The electrons 
are consequently polarized by the constant field only for a time ( o0/v) ~ 10-13 sec (v is the electron ve­
locity), much shorter than one period of the high-frequency field. Paramagnetic resonance in bulk super­
conductors thus appears to be impossible. To observe resonance in a superconductor, we must make the 
thickness d smaller than o0• An experimental observation of paramagnetic resonance in a bulk super­
conductor would imply that the resonance is produeed by the superconducting electrons. 

To determine the attenuation of the high-frequency and constant fields with depth, we solve Eq. ( 12a) 
of Ref. 3. An elementary examination of the terms in Eq. ( 12a) shows that Eq. ( 15) of Ref. 3 always 
holds for the normal electrons. We suppose that th.e constant field H0e -z/ oo is not too strong, so that 
even at the surface the Larmor frequency r1 0 = ( 2j.tH0/h) is small compared with the collision frequency 
( 1/to) of the electrons; this condition is always fulfilled in practice. Then taking the constant field along 
the x-axis, we obtain as in Ref. 3 

" 
Mz = X (Bz- Wz); ·;p = -~- ~ (j) sine d6; 

0 

( 1) 

M = Mx + iMy; I I to= 1 I t 0 + 1 I Tsp· 

Here M is the electron spin magnetization, T sp is the relaxation time for an electron spin to be flipped 
in a collision, v is the electron velocity, and w the applied frequency. We find then an equation for w, 

w (z) = r K (z; ft) (w 1~11-) + c.uHI (ft)) d[t, K (z; !-') = 21v r d~ exp { 
0 l 

But woo/v « 1 for w « 1013 sec - 1 • Therefore 

( 3) 

From Eq. (2) and (3) it appears that in superconductors with wo0/v « 1 there is never any paramag­
netic resonance from the normal electrons. But even in superconductors, the spin diffusion of the normal 
electrons gives rise to a small deeply penetrating term in the expressions for both high-frequency and 
constant fields. 

Using the methods which we have explained elsewhere, 3•4 we find for the constant field the expre~sion 

( c• I z I )2 :2 2u. 3Tsp e -zi6eff ' , c 

H(z)=H 0e-zJa,-t-A·4"'X ~ iHinc 1 71(;;-10- V , ; A --1, ''eff = vVto1spl3, 
1 -r wT sp 

Here we assume wto « 1, t0 « Tsp· Z is the surface impedance of the metal, 5 and Hlnc is the strength 
of the incident component of the high-frequency magnetic field. Thus when z » o0 the magnetic field in 
a superconductor is attenuated much more slowly than the usual London theory predicts. 
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(1954); 98,337 (1955). 
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JETP 5, 986 ( 1957 ). 



LETTERS TO THE EDITOR 611 

4 M. Ia. Azbel', J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1259 (1957), Soviet Phys. JETP 5, 1027 (1957). 
5 A. A. Abrikosov, Dokl. Akad. Nauk SSSR, 86, 43 ( 1952 ). 

Translated by F. J. Dyson 
150 

ON THE THEORY OF THE NEUTRINO WITH ORIENTED SPIN 

A. A. SOKOLOV 

Moscow State University 

Submitted to JETP editor June 5, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 794-796 (September, 1957) 

LEE and Yang1 have advanced the hypothesis of the nonconservation of parity under spatial inversion in 
the weak interactions. Developing this idea, Lee and Yang,2 Salam,3 and Landau4 have suggested that this 
violation of the parity rule can in particular cases be related to special properties of the neutrino, by re­
quiring that it satisfy an equation with the two-rowed Pauli matrices. According to this theory the spin of 
the neutrino is always parallel to the direction of its momentum, and the spin of the antineutrino is always 
antiparallel to its momentum. As has been shown by Landau and by Lee and Yang, this theory is invariant 
with respect to combined inversion. Combined inversion means interchange of particle and antiparticle 
with simultaneous spatial inversion. 

We wish to show that the new theory of the neutrino can be obtained from the Dirac theory, if in the lat­
ter one carries out an explicit resolution of the functions in terms of spin states.5 Then it is not neces­
sary to separate the interaction energy into a sum of main quantities and their pseudo-values (for ex­
ample, scalar plus pseudoscalar ). 

The Dirac equation for a free particle has the form 

where E and p are the operators for energy and momentum, respectively. and u' is the two-rowed 
Pauli matrices. Since the mass of the neutrino is zero (m0 = 0 ), we get a linear relation between the 
functions, 

where E = ± 1. 

(1) 

(2) 

We can choose four values for E: (a) € = 1 (states with E > 0 and E < 0 describe the neutrino), 
(b) E = -1 (states with E > 0 and E < 0 describe the antineutrino), (c) E = E/1 E I (states with E > 0 
correspond to neutrinos and states with E < 0 to antineutrinos), and (d) E = - E/1 E I (states with E > 0 
correspond to antineutrinos, and those with E < 0 to neutrinos). 

We consider first of all the case E = E/1 E I. in which the neutrino is a particle with positive energy 
and the antineutrino is a hole in the background of negative levels. Equation ( 1) takes the form 

The solution of Eq. ( 1) is of the form (see Ref. 5) 

e 
COST 

= L-'lz "_1_ ( 
L..J VT e · 
k \sin 2 e'9 

( 3) 

( 4) 


