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A theory is developed for the hyperfine interaction of a localized electron with nuclear mag­
netic moments, displaced by a certain distance from the center of symmetry of the electron 
wave function. The hyperfine structure of the electron energy levels has been derived. The 
calculation is performed with the aid of "smoothed" and detailed F-center wave functions. 
The result enables one to develop a theory of paramagnetic absorption of radio-frequency 
waves by F-centers. As examples, the shape and width of the absorption lines in KC1 and 
NaC 1 crystals has been obtained. 

1. INTRODUCTION 

THE application of the methods of radio-spectroscopy to the investigation of localized electronic centers 
in dielectrics and semiconductors has led to a series of important new results.1- 5 In particular, it must 
be pointed out, that these experiments made it possible for the first time to learn something quantitative 
about the distribution of the electronic lJ;-function in a crystal;4 to observe the very small effect of the 
g-shift1 (spin-electron resonance); to determine the effective mass tensor5 (cyclotron resonance), etc. 

The spin-resonance absorption of radio-frequency waves by F-centers in alkali halide crystals has 
been subjected to a particularly thorough experimental investigation. It was shown that the half-width of 
the absorption line in these crystals was several tens of oersteds. The intensity curves have a nearly 
gaussian shape. Attempts to explain such a large half-width of the absorption line by means of the inter­
action of the magnetic moments of the electrons in the various F-centers were not successful, since, for 
the F-center concentrations attained in the experiments ( 1017 -1018 em -a), ·~his interaction leads to a 
narrow absorption line, whose half-width is of the order of a few hundredths of an oersted. Kip, Kittel, 
Levy, and Portis4 proposed that the reason for th•~ widening of the absorption line was the interaction of 
the electron in the F-center with the magnetic moments of the nuclei of the metal ions which surround the 
missing halogen ion. 

As is well known, two models are currently accepted in the theory ofF-centers, i.e., the "continuum 
model" and the "molecular orbital." T,B Application of the orbital model, according to which the wave 
function of the electron has the form of a linear combination of the wave functions of the atoms surround­
ing the vacancy, led to the correct order of magnitude for the half-width of the absorption line. In con­
trast to this, estimates of the half-width based on the continuum model resulted in a disagreement between 
theory and experiment of from three to four orders of magnitude (in Ref. 4, the disagreement was some­
what less because the authors of that work used the somewhat incorrect model of Simpson,9 instead of the 
results of Refs. 6 and 7). Hence, it was concluded that the continuum model was not valid. As we shall 
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show, this conclusion is unfounded, because two essential points have been missed in Ref. 4, as follows: 
1. In the calculations, the results of Fermi10 for the hyperfine interaction in the s-state of hydrogen 

were used. The coupling constant in this case is given by the equation: 

(A) 

Here 11- and 11-' are the magnetic moments of the electron and nucleus respectively; I is the nuclear 
spin; tJ; ( 0) is the value of the electron's wave function at the point where the proton is situated. Using 
this expression, Kip et al. substituted for tJ; ( 0) the value of the wave function at the point where the 
nearest metal ion is found. 

However, the Fermi formula is valid only when the center of symmetry of the wave function coincides 
with the location of the nucleus. In the case ofF-centers, the nuclei of the ions are displaced with re­
spect to the center of symmetry of the wave function by the lattice constant. Thus, the wave function does 
not have spherical symmetry with respect to the ions, and Fermi's formula should not be applied. There­
fore, to calculate the spin-resonance broadening correctly, one must construct a theory for the hyperfine 
interaction between the electron and the magnetic moments of the nuclei displaced by a certain distance 
from the center of symmetry of the F-center's wave function. 

2. The potential for the spin-nuclear interaction is not smooth. Therefore, the calculation of physical 
effects from such a potential requires that one use detailed functions 7 rather than the "smoothed" func­
tions used in Ref. 4. This point is indicated in Ref. 11, without, however, any special grounds. 

In what follows, we shall develop a theory for the spin-resonance broadening of the electromagnetic 
emission from F-centers with the help of the observations described above. The continuum model of F­
centers and the effective mass method of Pekar12 •13 are used. 

In Sec. 2, the hyperfine interaction between a localized electron in an applied static magnetic field, and 
the magnetic moments of several nuclei, displaced with respect to the center of symmetry of the electron's 
wave function, is considered. For this analysis, "smoothed" electron functions are used. In Sec. 3, a 
similar calculation is performed for detailed wave functions, which permits one to construct a theory for 
the shape of the paramagnetic resonance absorption line associated with the absorption of radio-frequen­
cy waves by F-centers. 

2. HYPERFINE INTERACTION OF THE S-ELECTRON WITH THE MAGNETIC MOMENTS OF 
DISPLACED NUCLEI ("SMOOTHED" F-CENTER FUNCTIONS) 

We shall limit ourselves to the Pauli approximation to describe the behavior of the electron, as well 
as that of the nucleus. In Ref. 14, it is shown that a very general calculation, in which Darwin's relativ­
istic approximation is used to describe the behavior of electrons, leads to the same results. 

The energy operator for the interaction between a localized electron and the magnetic moment of the 
ionic nuclei can be written in the form: 

Here Hj is the contribution to the magnetic field from the nucleus of the j-th ion 

HI= (P.i IIi) curl curl (I if Pi), 

(1) 

(2) 

where IJ.j and Ij are the magnetic moment and the spin of the j-th ion; Pj is the distance between the 
j-th nucleus and the electron. Expanding 1/pj into a Fourier series 

(3) 

and using (1) and (2), we find 

~ fl. ~ fl.J 1 fl. ~ fl.J ~ ik·P dkj u = 4 'It: T s ~ a (Pi) T II-22 s ~ 1 (liki) (Ski) e 1 1 - 2 • 
i 1 1t i I ki 

(4) 

The wave function of the system, -.IF, depends on the rectilinear coordinate, r, of the electron, and 
on the spin coordinates of the electron, s, and of the nucleus, Sj· In the zero order approximation, when 
the hyperfine interaction is ignored, -.IF can be written in the form of a product: 
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'¥ (r, s, si) = ~ (r) X (s) n X' (si)· 
j 

~-~----·--~ 

(5) 

Forming the matrix of the operator of Eq. (4) with the rectilinear part of the wave function (5), we ob­
tain the operator for the hyperfine interaction, ,V, depending only on the spins of the electron and of the 
nuclei 

(6) 

Here Rj is the distahce from the center of symmetry of the wave function to the j-th nucleus. 
The second term in (6) can be put in the form 

The indices m and n signify the components x, y and z. Using as the form of the F-center wave func-
tion the expression 

cp(r) = rx.'l, (I+ rx.r)e-~r j~, (7) 

we obtain 
(8) 

In crystals in which the radius of the F-center wave function is not much greater than the lattice con­
stant, one can sum over j in (6) by limiting oneself to the first coordination sphere. In a lattice like 
NaCl this means summation over six metallic ions, which are closest to the vacancy, all located at the 
same distance R from the center of the vacancy. In this case W simplifies to 

6 6 

W =AS.~ 11 + BS ~ RJ(liRJ), (9) 
i-1 l=1 

A-~[- I+ -q (I + + L + _l_ a+~ 4 + __!_ s\] - SJR3 e q 2 14 q 56 q 56 q ) ' 
2 _ 3f.lfl 1 

[ _ 1 ( q2 qS qt q5 )] 
BR - siRs I - e 7 I + q + 2 + 6 + 24 + 168 ' 

(10) 

q=2rx.R. 

If the z axis coincides with the direction of an applied static magnetic field, W can be transformed 
into the form 

or 

6 

W = Sz ~ !:.i O~x COS rx.j + Jjy COS~~+ JjzCOS 'If), 
i-1 

BR1zRJy 
cos~~= !;;. ' 

I 

6 

W = Sz ~ /11 JfnJ' 
/-1 

where nj are orthogonalized direction col!ines defined by (12). 

(11) 

(12) 

(13) 

If we form the matrix of the operator W with the spin part of the same function (5), we determine the 
terms of the hyperfine structure 

6 

W' '= Sz ~ !:.1/ t. 
/=1 

(14) 

where Sz has the same meaning as the spin operator of the electron and lj is equivalent to Ijn·. As 
seen from (14) and (15), the energy of the hyperfine interaction depends on the orientation of the fuagnetic 
field with respect to the crystal axes. To estimate the maximum width of the spin resonance broadening 
we apply a magnetic field along one of the crystalllographic axes of the crystal and 

6 2 

W .. = Sz [A ~Ii +(A+ BR2 ) ~ /1] 
/=1 J-1 

(15) 
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The effective magnetic field, corresponding to the maximum value of Wm, is found to be equal to 

h = W,Jp.. ( 16) 

Numerical calculations show that for alkali-halide crystals the maximum width 6 = 2h is equal to 1- 2 
Oersted. 

Thus, it has already been shown that taking into account the first of the conditions enumerated in Part 1 
leads to an increase by a factor from 10 to 20 of the line width as compared to the estimates made in Ref. 
4. This increase in width is not, however, sufficient to bring the theory into agreement with the experiments. 

3. PARAMAGNETIC RESONANCE OFF-CENTERS (DETAILED FUNCTIONS) 

Equation (6) for the operator of the hyperfine interaction also permits one to proceed with a calculation 
using detailed wave functions. The latter are written in the following way: 

ljJ (r) = Q"'q;u, ( 17) 

where cp is the smoothed F-center wave function [Eq. (7)], is the normalized Bloch wave function of the 
electron at the bottom of the conduction band and Q is the volume of the fundamental cell of the crystal. 

In crystals, in which cp 2 (r) decreases comparatively rapidly as the distance from the vacancy increases 
(alkali halides have this property), after substituting ( 17) into ( 6), the summation over j is sufficiently 
accurate if it is limited to the ions in the first coordination sphere (the metal ions). No essential difficulty 
is introduced if one does the calculation while taking into account the ions in subsequent coordination 
spheres. 

Using the tight binding approximation, the Bloch function u can be written as a linear combination of 
atomic wave functions. For crystals of the type KCl, these will be, obviously, the atomic functions of 
potassium (1./ls) and of the chlorine ion (lj;q) 

u=c[2>~.+C1 Sti>q]· 
s q 

(18) 

Here C is a normalization constant. The constant C~, from the evaluation conducted in Ref. ( 4), is less 
than unity (in KCl it is approximately 1/6). Summation over s and q is extended over all positive and 
negative lattice points, respectively. 

Substitution of ( 18) and ( 17) into ( 6) and neglecting small triple overlap integrals leads to the follow­
ing result: 

1 \ "k R dk · • ik ·r [""' ""' 1 } - 27t2 ~(1iki)(Ski)e-' i i k/~e 1 cp 2 (r) .LJY~+ Ci.LJI\I~Jd-r . 
I s q 

( 19) 

In Eq. ( 19), in view of the rapid attenuation of cp 2 (r) the second and fourth terms are considerably smaller 
than the first and third. This is true also for the case of a central halogen ion, q = 0, (an ion, in an un­
colored crystal, replaces the vacancy). In fact, one should substitute the value of the wave function at the 
point r = Rj into the second term (where Rj is the point at which the metal ion is located). Nevertheless, 
in view of the rapid attenuation of atomic functions (e.g., the ion C 1- -) this term, as has been shown by 
calculation, at a distance equal to the lattice constant, is considerably less than the terms of the first sum. 
Numerical calculations show, that even in the integral the main contribution is made by the terms which 
depend on the wave functions of the metal atoms, and the terT-s containing l./1~ can be neglected. 

Taking all this into account, and also normalizing ( 18), W can be rewritten as follows: 

6 fi G ,.. 

W = ~~· 4d20cp2 (R) •';/ (R) S Sli- 2~, ~· 0 0 S ~ ~ d:{ (Iiki)(Ski):c- 1 (kiRi) ~ c1kir y2 (r) y; (r) d-r. ( 20) 
1~1 1~1 s~r 1 

Here n0 is the volume of the elementary cell of the crystal. 
To perform approximate numerical calculations, one replaces cp 2 (r) in Eq. ( 20), by the functions of 

Eq. ( 7), and tf;~ (r) is replaced by the Hartree free-atom wave functions for potassium in KCl and sodium 
in NaCl. 

Performing the integration in Eq. (20) is especially convenient, if cp 2 and t/1~ are approximated by sums 



598 M. F. DEIGEN 

of gauss ion exponentials: 

a 3 ~ o r" (!12 = - bx e-l-'X w 

' 7-rr 
( 21) 

(p = r- R). The error associated with the approximation in the integration interval does not exceed 7%, 
if the summation in the first sum is restricted to ten terms for KCl and seven terms for NaCl and to three 
terms for both crystals in the second summation. 

Cumbersome, but in principle not difficult calculations, lead to the following expression for W: 

(22) 

Here 

(23) 

(24) 

i = 0, 1, 2; n0 = nt = 1; n2 = 4 and q, (t) are Kramp's functions 

B R2 = K ""'a b, exp {- _'!:.P~"R 2 
} [<D" (to)_ 3<D' (to) + 3<D (to)) 

o L.J P " a + B lo 12 13 ' 
p,><. p '" 0 0 

B1R2 = K ~ apb• exp {-;£;~2} [
3<D3(t,)- 2<D'(t1) (1 + +)], 

p,><. p '" tl 211 (25) 

B Rz - 4K "' ( + o ) R2 b J- :!.>~ ... R2 } [cD" (t,)- 3<1J' (t,) + 3<D (t,)]; K [.Lf-1.' noa" 
2 - .6 ocP P>< ap "exp l a. + Q 3 4 5 = Sf ----:;r= . 

p,>< p r-'x 12 12 12 28rrr 

In Eqs. (24) and (25) A0 and B0 are the contribution of terms corresponding to j = s; At and Bt are 
the contributions from the nucleus opposite the j-th ion and finally, A2 and B2 are the contributions of 
nuclei located in a plane perpendicular to Rj. 

The operator ( 22) resembles the operator ( 9) and its eigenvalues can be determined, in the same way 
as in Sec. 2 (the last term in (22) does not c-omplicate the calculation). 

As has been shown by numerical calculation, the terms Ai and BiR2 are smaller than a in alkali 
halide crystals. Furthermore, At and A2, Bt and ~ are considerably smaller than A0 and B0 re­
spectively. Therefore for these crystals Eq. (22) simplifies as follows 

6 6 

W =(a+ Ao) ~ Sz fjz + B0 ~ Sz Rjz (IjR 1-). (26) 

In complete analogy with Eqs. (11) and (14), the eigenvalues of Eq. (26) can be written in the form 

(27) 

(28) 

Sz and Ij have the same meaning as in Eq. ( 14). Hence, it follows, that the hyperfine interaction energy, 
and therefore, the half-width of the spin-resonance absorption band, must depend on the magnitude of the 
angle between an externally applied static magnetic field and the crystallographic axis. The shape of the 
line, according to Eq. (27), differs slightly from a gaussian, since Ij contains coefficients which are 
functions of the size of the nucleus. Calculations show that this effect is not large in crystals of high 
symmetry (lattices like NaCl), but they can be, generally speaking, significant in crystals with other 
symmetries. 

From th€ above it follows that, in alkali halide crystals, the shape of the paramagnetic absorption line, 
in agreement with experiment, is nearly gaussian. For these crystals 



PARAMAGNETIC RESONANCE OF F-CENTERS 

6 

U7 =Sz(a+ A 0)~/i· 
j e~l 
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(29) 

Using Eq. (29) it is readily shown that the effective magnetic field, h0, corresponding to the half width of 
the absorption line turns out to be equal to 

h0 = 3.37 (a+ A 0)/f1. (30) 

Equation (30) leads to the following values: h0 (KCl) = 8 Oersted; h0 (NaCl) = 13 Oersted. These values 
are still several times smaller than the corresponding experimental ones. This difference is explained 
not so much by failure to include additional coordination spheres, as by failure to satisfy the criteria of 
the macroscopic approximation in KC1 and other alkali halide crystals. Because of this, the value of the 
wave function cp (r) turns out to be decreased at the point r = R. 

If for purposes of evaluation, one proceeds as in Ref. 4 to make use of the value of ltt~ at zero, which 
value is carried over from radio-frequency spectroscopic data (following this procedure, however, as is 
well known, causes the value of ltt~ (0) to be underestimated with respect to its Hartree value), ho turns 
out to be 15 Oersted. The experimental value of h 0 is 52 Oersted. Similar results are also obtained for 
NaCl. 

Thus, the continuum model of the F-center leads to theoretically values of the half-width of the ab­
sorption line which coincide with corresponding experimental values within an order of magnitude. 

I wish to express my gratitude to Prof. S. I. Pekar for his interest in this work. 
Note added in proof (August 26, 1957). In a recently published paper, Feher discovered experimentally 

a dependence of the frequency of nuclear-spin transitions of the ions, surrounding an F-center, which has 
been saturated by the absorption of radio-frequency waves, on the orientation of the crystal in an external 
magnetic field. 

All the qualitative and quantitative properties of the phenomenon are described by the Hamiltonian of 
Eq. (22). In particular, it is readily shown, that the spin Hamiltonian can be written in the form 

fi 6 

W = AE(Sli) +BE (SRi) (IiRi), 
j~1 j~1 

where the second anisotropic term indeed leads to the reported angular dependence. 
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