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We investigate the bound states of a neutron in a potential whose parameters are obtained 
from the optical model of the nucleus, plus a spin-orbit interaction. Agreement with experi
mental data is obtained for the ordering of single particle levels for nuclei consisting of a 
closed shell plus one nucleon. 

IT is known that the shell model is successful only for nuclei consisting of a closed shell or of a closed 
shell plus one particle. For nuclei which have one particle outside of a closed shell, the excited states 
can be divided into two groups. Among the levels belonging to the first group are those which have a high 
probability of excitation in (n, ')'), (p, ')'), (d, p ), and (d, n) reactions. Such levels are usually called 
single particle levels, since it is assumed that they occur when the odd nucleon occupies a level in the 
field of the core. Other levels are excited weakly in the reactions cited; this may be regarded as a con
sequence of a change of state of the core in the formation of such levels. This notion is confirmed in var
ious cases by the values of the spin and parity of the levels (for example, for 0 11 ). The latest experi
ments of Groshev and co-workers1 on (n, 'Y) reactions and the experiments of several authors on (d, p) 
reactions have shown that in many other odd nuclei one group of levels is excited very strongly compared 
to the other levels. The data on ( d, p) reactions, which refer to states with arbitrary angular momentum, 
are especially instructive. These experiments show that single particle levels occur quite commonly, i.e., 
the model using an average core field has a wide range of validity. One may raise the question whether 
the scheme of single-particle levels could be obtained from a potential well model. In doing this it would 
be desirable for the parameters of the potential well to be determined from other experiments. 

There is a direct connection between the problem of single particle levels and that of the broad neutron 
resonances which have been explained on the basis of the optical model. The first model of Weisskopf, 
Feshbach, and Porter,2 which used a square well, was crude and did not explain the large value of the re
action cross section at low energies. Later, the present author3 improved this model by considering a nu
cleus with a diffuse edge. The model enables one to explain the fundamental regularities in neutron cross 
sections, angular distributions and polarizations for scattering by medium and heavy nuclei (excluding the 
case of highly deformed nuclei). 

Computations of cross sections done on the "Strela" computer enabled us to obtain the most reasonable 
set of parameters for describing the nuclear potential. 

1. CHOICE OF POTENTIAL 

The potential is complex. The assumption was made that a potential with the same parameters, but 
omitting the imaginary part (so that there are no incoming waves), should describe the stationary single 
particle levels. The parameters of this potential turned out to be quite close to those used in the calcu
lations of Ross et al.,4 although they differed from their values in various respects. The real part of the 
optical potential consists of two terms: 

1) the average potential, which is the same for all ! and j, and is equal to 

V 1 = V 0 j [ 1 + ex p (r -;:- R 0) J ; 

2) the spin-orbit interaction, which is chosen in the form 

V2=-; ~~ 1 (1-cr). 

The constant in the spin-orbit interaction was taken from the experiments of Levintov, 5 whom the au-
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thor wishes to thank. This value, K = 3.3 x 10-21r cm2 is somewhat lower than that of Ross et al. A cal
culation of the polarization of 400 kev neutrons shows that this value of K is in agreement with the ex
periments of Adair. The quantity a which characterizes the diffuseness of the boundary was taken equal 
to 1/k0, where 

This value of a gives reasonable values for the neutron strength function. The values of k0 and R0 

were selected by comparing calculated and experimental curves of total cross sections and angular dis
tributions. The final parameter values chosen were: V0 =50 Mev, Ro = 1.23 x 10-13 A 1/ 3 em. 

With this potential, we calculated the dependence of level positions on R0• 

2. CALCULATION OF BOUND STATES 

The calculation of bound states was done by hand computation. The solution of the Schrodinger equa
tion was represented in the form 

·1 = x-'1•Kw:, (x) Vz (x), 

where x = Kr and K = ,j- 2mE/h, and E is the level energy. At infinity, Vf. (x)- 1. We tried to find 
a value of Ro for which Vf. (x), for a preassigned value of E, goes to zero at x = 0, Then the function 
tJ;(x) satisfies the correct boundary conditions at x = 0 and x = oo, and the corresponding value of E 
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Dependence of Nuclear Energy Levels on Atomic Weight 

is the level energy for given R0, 1., 
and j. Level positions were calcu
lated for energies from zero up to 8 
- 9 Mev. There is no sense in com
puting lower levels since they are al
ready filled and cannot appear as one
particle levels. Ross et al. computed 
precisely those levels whose binding 
energy is greater than or equal to the 
binding energy of the first occupied 
level. Thus our work fills the gap be
tween the continuous spectrum and the 
first capture level. At present, the 
calculations have been done for 1s, 

1P3/2• 1Pt/2• 2s, 1<is/2• 1d3/2• lfT/2• 
2p3/2, 2Pt/2• and H 5f2. i.e., for nu
clei with A < 50. For heavier nuclei 
the level positions are of less inter

est. The calculation is interesting once more only in the region of lead, for which we plan to do it later. 
The dependence of level energy on nuclear radius is shown in the figure. 

The most important feature shown in the figure is the change in the order of levels with changing nu
clear radius, i.e., the crossing of terms. When the nuclear radius is small or, what amounts to the same 
thing, when the term has a high excitation, the ordering is essentially different from the ordering of the 
ground states. Thus at high excitations the 2s level has lower energy than the 1d5; 2• while the lf5; 2 
lies above the 2p1; 2• 2p3; 2 levels. As we shift to the ground states, the 1d5; 2 drops below the 2s level, 
while the lf5/2 goes below the 2Pt/2 level and, for large A, below the 2p3/2 level. This crossing of 
terms is caused by the centrifugal potential which, in nuclei of small radius, causes an appreciable in
crease in the energy of levels with large 1., and pushes them into the continuous spectrum. 

- With increasing radius, the influence of the centrifugal potential diminishes, and levels with large I. 
drop more rapidly than those with small 1.. 

3. COMPARISON WITH EXPERIMENTAL DATA 

We should like first to compare the level scheme we have obtained with the experimental data for nu
clei consisting of a closed shell plus one particle .. These are the nuclei 0 11 and Ca41 , and also those nu-
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clei which correspond to a closed subshell plus one particle: C 13, Si29 , Si31 , and s33 • For the value of Ro 
which we have used, the 0 16 nucleus has a radius of 3.11 x 10-13 • With this R0, the order of the levels is 
the following: 1s, 1p3; 2, 1p1; 2, 1d5; 2, 2s, 1d3f2. The 1s, 1p3/2, and 1p1; 2 are filled, and the ninth neu
tron, in agreement with experiment, is in the 1d5; 2 state, whose energy, according to the theoretical 
curve, is 4.1 Mev in good agreement with experiment. The first excited state is 2s. The experimental 
value of the excitation energy is 0.5 Mev less than calculated, but better quantitative agreement should 
not be expected. The 1d3; 2 state lies at about 1 Mev up in the continuous spectrum, in complete agree
ment with experiment. Other low-lying states must be assumed to be empty. 

Now we consider C13 • For this nucleus, the binding energy of the 1p1; 2 ground state is in poor agree
ment with experiment (the computed value is 8 Mev). Such a deviation may be related to the inexact na
ture of the j-j approximation. If the coupling of orbital moment and spin is intermediate, then C12 does 
not represent a closed shell and the 1p1; 2 level is not a rigorous single-particle level for C13• On the 
other hand, the excited states have the opposite parity, and for them the field of the c12 nucleus may be 
considered to be some average field. It is therefore not surprising that better agreement with the theory 
is obtained for the excited 2s and 1d5; 2 states. The energy of the excited state is about 1 Mev higher 
than the experimental value, but the order of the levels is the same as in experiment, and the splitting is 
""' 0.5 Mev instead of the experimental value of 0. 7 Mev. 

For nuclei with A > 17 the binding energy of the 1d5; 2 state should not be compared with the theory, 
since there are now many particles in the 1d5; 2 state, and their interaction with the last odd particle can
not be described by means of a self-consistent field. The single-particle 2s and 1d3; 2 states must be 
assigned in each particular case. This can be done, for example, from the probability of excitation in 
deuteron stripping. If we assume that the ground state of Si29 is a single-particle 2s state, then the com
puted binding energy is 9.3 Mev, while experiment gives 8.5 Mev, so that the agreement is satisfactory. 
For S33 the ground state is 1d3f2, and the binding energy is also in satisfactory agreement with experi
ment. For nuclei with N < 20, the lf7; 2, 2p3; 2, and 2p1; 2 states should be excited. Since the parity of 
these states is opposite to that of the partially filled shells ( 1d5; 2• 2s, 1d3; 2 ), the single-particle model 
can here give a satisfactory description even for incomplete shells, i.e., for any odd nucleus. Actually, 
the situation is made essentially more complicated by the large deformations of the nuclei in the region 
20 < A < 30. Experiments on the (n, y) reaction indicate the presence of a bound 2p3; 2 level for Mg25 

(with a binding energy of 4 Mev). However, according to the calculation, for Mg25 the lf'l/2 and 2p3; 2 

states should still lie in the continuous spectrum. These states begin to be bound only at Si29 • Also the 
excitation energy of the %- state increases as we go to Si29 , which is in qualitative disagreement with the 
theory for spherical nuclei. For Si29 the lf7; 2 and 2p3; 2 states have E < 0, but the excitation energies 
of these states are considerably higher than the experimental values. On the other hand, ~E = E (f7; 2 ) 

- E (P3/2) is close to the experimental value. The agreement with experiment improves for s33, although 
the excitation is again too high. 

The level scheme for Ca41 is most interesting. It has been pointed out that for this nucleus, excited 
single-particle 2p3; 2 and 2p1; 2 states are observed, while the lf5; 2 state is not. According to the com
putation, the binding energy of the lf5; 2 state is close to zero, and one is unable to observe this state by, 
for example, deuteron stripping. The order of the other states and their energy differences are given 
more or less satisfactorily, but all the states have binding energies somewhat lower than the experimental 
values. 

On the whole we may say that the optical model gives the correct order of excited single-particle 
states of light nuclei, but cannot give the position of individual levels with sufficient accuracy. This may 
be partially due to the fact that the A113 law is not exact. A deviation of 1% from this law would be suf
ficientto shift a level by 0.5 Mev. In addition, the shape of the potential near the nuclear boundary is ap
proximate. However, in some cases one may hope to go a little farther and calculate the probability of 
radiative transitions, starting from the singe-particle model. 

1 L. V. Groshev and A.M. Demidov, AToMnMI :mepnm (Atomic Energy) 3, 91 ( 1957 ). 
2 Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954). 
3 P. E. Nemirovskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 30,551 (1956), Soviet Phys. JETP 3, 484 

( 1956 ). 



576 P. E. NE MIROVSKII 

4Ross, Mark, and Lawson, Phys. Rev. 102, 1613 (1956 ). 
51. I. Levintov, Dokl. Akad. Nauk SSSR 107,240 (1956), Soviet Phys. "Doklady" 1, 175 (1956). 

Translated by M. Hamermesh 
141 

SOVIET PHYSICS JETP VOLUME 6 (33), NUMBER 3 MARCH, 1958 

SCATTERING OF ELECTROMAGNETIC WAVES IN A PLASMA 

A. I. AKffiEZER, I. G. PROKHODA, and A. G. SITENKO 

Khar'kov State University 

Submitted to JETP editor March 18, 1957 

J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 750-757 (September, 1957) 

Combination scattering by plasma density oscillations may occur when electromagnetic waves 
are propagated in a plasma. The intensity of combination scattering of electromagnetic waves 
in a plasma is determined in the absence and in the presence of a constant uniform magnetic 
field. 

I. It is well known that there can exist in a plasma weakly damped electromagnetic oscillations which 
are associated with oscillations of plasma density whose frequency (without taking dispersion into ac
count) is given by1 Q = J 47Tlloe2 /m. The existenee of these oscillations leads to a periodic variation of 
the dielectric constant in the plasma. Because of this, combination scattering of electromagnetic waves 
propagated in the plasma becomes possible, i.e., if a wave of frequency w0 > Q is propagated in the 
plasma then at the same time waves with frequencies w = w0 ± nQ, where n is an integer, will also be 
propagated. The object of this paper is to determine the intensity of these waves. 

Let us first determine the dielectric constant of the plasma. We start with the equation 

1 aD 1 dE 4n. 
curiH = c a!= cdi + --;;Jrree' ( 1) 

where Jfree is the current density associated with the motion of the plasma electrons and is equal to 
lfree = env, n is the electron density, v is the electron velocity which is related to the electric field 
by the equation v = eE/m. From these equations it follows that 

I 

v(r, t) = ~ ~ E(r, t')dt', 
t 

hree(r, f)=-~ n(r, t)~ E(r, t')dt'. 

Substituting this expression for lfree into Eq. ( 1 ), we find 

We now introduce the dielectric constant operator by D = €E. Then 

t ,, 

; (r, t) E (r, t) = E (r, t) + 4: 2 ~ dt'n (r, t') ~ dt"E (r, t"). (2) 


