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It is shown that the bOlmd states of an electron and positron may be studied by examining the 
poles of the photon propagator. 

WE consider the bound states of an electron and a positron. Starting from the Bethe-Salpeter equation 
in the ladder approximation, and taking Fourier transforms of the wave-function tt; af3 ( 1, 2) and of the 
functions SF, DF, we obtain the momentum -spaee equation 

(1) 

Here n = 1, 2 denote solutions of the Dirac equation with positive energy, n = 3,4 those with negative 
energy, and 61 = 62 = 1, 63 = 64 = - 1. The second term in Eq. (1) is the exchange term. We define the 
three-dimensional amplitude by 

an,n, (p) = ~ An,n, (p) dpo. 

We obtain the adiabatic approximation1 from Eq. (1) if we replace DF by JDF (p) 6 (Po) dp0• The first 
non-adiabatic approximation is obtained by substUuting the adiabatic expression for An1 n2 ( p) on the 
right of Eq. (1) and integrating with respect to Po and Po· Neglecting the minus particles, we have the 
old Tamm -Dancoff equation for positronium. We are interested in the contribution of the exchange term. 
After dropping tensor terms and integrating over angles, we obtain the equations for the triplet s-state 
(at a2 = 1 ), 

a•(p) = 1 ~fK, (p,p',e:W)a"(p') -f- K2 (p,p',e:W)a-"(p') _ 4[a"(p') +a-"(p')l} ,2 d, 
' I '2£ -~W 2E -e:W W 2 (2E -oW) P P' ' p p p ~ 

Here €=1 fortheplus-component (a++), and E=-1fortheminus-component (a--); i\=e2/4r1-= 
1/13711'. 

In the adiabatic approximation 

K ( ' lV') K _1_Jn p+p' 
I p, p ' 8 w' = 2 = pp' I p -- p' i . 

and in the first non-adiabatic approximation 

1 P+P'+EP+EP,--e:W _ 1] P+P'-i-Ep+EP, 
K, =---;In' '. ' E , E w' K.- ' n, , + E + E . pp I p -- p I T p I - p' -- e: " pp I p- p I 'p p' 

We introduce the notation 

\ '2d ' z = ~ 4 [a• (p') + a-• (p')l P w~ 

and look for a solution of Eq. (2) of the form 

a3 (p) = IT• (p, 'W) x/(2F o- s\¥1 ) + g• (p). 

Substituting this ansatz into Eq. (2), we find that rE satisfies 
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(2) 
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p ( , W) = I+),\{ K,r• (p', l~) + K;r~•(p', W)} p'idp', 
p .) 2EP, -ell 2EP, + e:W 
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(3) 

while g€ satisfies the homogeneous equation with kernels K1 and K2• The homogeneous system of 
equations for a € has energy eigenvalues W differing from the eigenvalues of the equation for g €. 
Therefore, if W is one of the eigenvalues for a €, the equation for g€ has no non-zero solution. Sub­
stituting a € into the expression for x, we find 

(' r• (r W) p2dp 
X [W2- TI (W 2)] = 0, with TI (W2 ) = - 4/, ~ ~ 2~ _ e:W . 

• p 

Since the equation for rE is the equation for a vertex function, II ( W2) is the photon polarization 
operator. Eq. (21) will have a nontrivial solution only for values of W at which the photon propagator 
DF = 1/ ( W2 - II ( W2 ) ) has a pole. To find the poles we must carry out a renormalization. We separate 
a divergent factor from the vertex function 

r• (p, W) = zr~ (p, \F). 

The renormalized function rg is defined2 by the condition rg ( 0, m) = 1. Substituting rE (p, W) = 
Z rg (p, W) into Eq. (3) and separating rg (p, W) into two parts 

r~ (p, W) = r~ (p, m) + cp• (p, W), 

we obtain the equations 

00 

r• (p m) = I + 1.. \' {[K,(p, p', e:m)- Kt(O, p', e:m)] r• ( , ) + [ K2 (p, p')- K2 (0, p')] r-• (p' m)l p'Zdp'· 
c , .l 2£ - e:m c P , m 2£ + e:m c , { , 

6 ~ ~ 

where 
00 

P• ( W) = . \ {[ K1 (p, p', e:W) _ ~1 (p, p', e:m)] r~ {p', m) + [. K2 (p, p')_ _ K2 (p, p')] r;• (p', m)} p'2dp'. 
p, A.) 2£ -e:W 2EP,-e:m 2Ep,+e:W 2EP,+e:m 

0 p' 

After removing the overlapping divergences, the finite part of the polarization operator is separated,* 

TI (U/' 2 ) = n (0) + D' (0) W 2 +Tic (W 2) • 

A calculation up to terms of order A gives the result II' ( 0) = - Y4 in the adiabatic approximation and 
II'( 0) =-% in the first non-adiabatic approximation (after dividing by Z2 ). The charge-renormalization 
is thus finite. The quantity II (W2 ) -II( 0) is obtained as an integral involving rg (p, m) and .p€ (p, W). 
The function rg (p, m) is calculated by successive approximation. The asymptotic form of rg (p, m) 
is p-2 A in the adiabatic and p-A in the first non-adiabatic approximation. In the adiabatic approxima­
tion .p+(p, W) = .P-(p, W) and so the two equations reduce to one, giving the result 

{ 
<;:' <D+ (p W) r+ (p m) 4£ (W 2 - m2) p2dp } 

Z2Tic (W 2) = TI (W 2 ) - TI (0) - TI' (0) W 2 = Z2 - 4/, \ ' c ' P + 0 (I..) . 
• \ ( 4£2 - W 2) (4p2 + 3m2 ) 
0 p 

.p+(p, W) satisfies a non-homogeneous equation. A variational calculation shows that up to terms of 
order A we may replace the kernel of the homogeneous integral equation corresponding to the given non­
homogeneous equation by the kernel which describes the motion of an electron in a Coulomb field. We 
make the change of variables 

pjm = t v~. ~ = IE i;m, w = 2m- IE i 

and replace the unknown function by 

*In the old Tamm -Dane off method it is impossible to separate lie covariantly, since II depends on 
W and not only on W2• 
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Then the equation for 4>+ becomes symmetric, and the binding energy appears only in the coefficient of 
the integral, 

r I ' l' 'I. 
'P (t) = ·; ~ [(t2 + 1) (t'2 + 1)]-"' ln I 1 = 1,! ? (t') dt' + f (t), ·r = n-. (4) 

The solution of a symmetric equation may be written 

tD(i)=f(t)+·r ~ fn'Pn(t)' fm=(f,'!!m}, 
' n 1 Yn-1 • 

where 'Yn are the eigenvalues and <fJn the eigenfunctions of Eq. (4), namely 

n-1 

(f) _ __3_ (1 + f 2 }-n--'/, '\1 (- 1}m 2n(2n-1) .. -(2n-2m) t2 m+l 
Cf'n - Vn .::.J (2m+ 1)! · 

m~-o 

Since llc contains a factor l\., the quantity W2 -· llc ( W2 ) can vanish only near to an eigenvalue of the 
equation for 4>+. For example, suppose y ·is near to y1; then we substitute <p(t) into llc(W2 ) and ob­
tain the result 

where {31 = E tfm, E 1 = me4/4h2, and .6.{31 is the ground-state level-shift. Therefore W2 - llc(W2) vanishes 
for D./3 1 = {3 1a 2 or .6.E 1 = E 1a 2, with a = 1/137. This result agrees with the perturbation theory calculation 
of the level-sh:i.ft in the ground-state of positronium.3 For the other states, taking y near to 'Yn• we find 

W2 - Tic (\fl 2 ) = 4m'l- 4m2 (~n).2~2/Ll~n · n) + 0 ().) = 0, 

with f3n = {31/n2• Therefore W2 -lie( W2) vanishes when 

We conclude that the study of the poles of a propagator can give information about the bound states of a 
fermion and an anti-fermion. The results are consistent with Lehmann's theorem.' We are currently 
applying the method to a study of the bound states of nucleon and antinucleon. 
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