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then, for x' = 10, even for Z1 = Z2 = 100, R = 0, 64 x 10-8 em. However, at distances R > 10-8 em, the 
calculation of the interaction potential of atoms on the basis of a statistical model loses its meaning. 

Thus, in the limits of accuracy of the Thomas-Fermi statistical model of the atom, the interaction be­
tween atoms at distances between atoms less than 10-8 em can be described by the potential 

(10) 

where x (x) is the Thomas-Fermi screening function. 
This fact, that the screening function can be expressed approximately as a function a single argument, 

allows us to compute (within a suitable interval of energy of relative motion and for suitable scattering 
angles) the effective differential scattering cross section at once for an arbitrary pair of colliding atoms. 

In conclusion, I want to thank Academician M. A. Leontovich, Prof. A. B. Migdal and V. Galitskii for 
useful discussions of the research. I am very grateful to G. I. Biriuk for the computation of the integrals 
of Eq. (4). 

10. B. Firsov, J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 1464 (1957); Soviet Phys. JETP 5, 1192 (1957). 
2 P. Gombas, Statistical Theory of the Atom and its Application, (Russ. Transl.) IlL, Moscow, 1951. 
3 0. B. Firsov, Dokl. Akad. Nauk SSSR 91, 515 (1953). 

Translated by R. T. Beyer 
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A one-parameter family of self-similar solutions for cylindrical motion is constructed in the 
acoustical approximation. This construction is accomplished by superposition of plane waves 
and is expressed in elementary form by quadratures. For motion with a finite pressure dis­
continuity on the wave front of a converging cylindrical wave, the results agree with those ob­
tained previously. 1 It is found again that the pressure in the reflected wave is infinite. The 
maximum pressure is estimated and allowances are made for the deviations from the acous­
tical approximation for large amplitudes. 

ZABABAKHIN and Nechaev1 have treated the propagation of a weak cylindrical shock wave and its reflec­
tion from the axis in the acoustical approximation.* Their solution for the reflected wave has an unex­
pected property: the pressure on the front diverges logarithmically, and is the same before and behind the 
front, that is 

(where p is the pressure change, and the solution is valid only for p « Po). 
No such singularity occurs when a spherical acoustical wave converges onto a center and is reflected, 

or for strong cylindrical and spherical shock waves.2 It is therefore desirable to obtain the result of 
Zababakhin and Nechaev differently, by a method in which the necessity for their solution would become 
clearer. 

*I take this opportunity to express my gratitude to the authors, who communicated their work to me 
before its publication. 
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It was found possible to obtain a whole family of self-similar cylindrical solutions of which, however, 
the most interesting is just that found by Zababakhin and Nechaev. 

1. GENERAL SOLUTION OJ~ THE CYLINDRICAL PROBLEM 

The known solution of the acoustical problem for a plane wave propagating along the x axis, 

Ppl = f (x- ct), Ux = ( ljpc) f (x- i:t), Uy = Uz = 0, (1) 

shall be written in cylindrical coordinates with the polar axis directed at an angle cp to the x axis. On 
the polar axis x = r cos cp so that on this line the pressure and velocities are given by 

PpJ=f(rcosrp-ct), u,=(ljpc)cos<f·f(rcosrp-ct) Ucp=(ljpc)sinrp·f(rcosrp-ct), Uz=O. (2) 

By superposing such plane waves with all possible values of cp we obtain the cylindrically symmetric 
solution depending on one arbitrary function* 

p=p(r,t)=={~f(rcosrp-ct)drp; (3) 
0 

21t 

u, = u, (r, t) = 2~c ~ em. rp· f(rcos rp- ct)drp. Ucp = Uz = 0. 
0 

(4) 

It is convenient to change the notation by making the substitution k = cos cp, so that 

+1 

p = ~ f (rk- ct)dkJVl- k2 ; 

-1 

+1 

u,= .!.._( f(rk-ct)kdkfV1-k 2 • 
pc j 

-1 

(5) 

(6) 

It is easy to see by direct substitution that the function p ( r, t) so defined satisfies the wave equation 

1 azp 1 a ap 
C2 iJt2 = r a; r ar ' (7) 

2. SELF-SIMILAR SOLUTIONS 

We shall choose the function f ( z ), where 

z = r cos q;·- ct = rk- ct, 

in such a way that the constants entering into the definition of f ( z) cannot be combined to form a quantity 
with the dimensions of a length. Then the only quantity with these dimensions which enters into the ex­
pression for the pressure will be, with the exception of the independent variable r, the product ct. Then 
the solution will be self similar, i.e., of the form 1tnlj;( r/ct). 

Specifically, let us choose f ( z ) such that 

f (z) = 0 for z > 0, f (z) = a (- z)n for z < 0. (8) 

On inserting (8) into (5), the limits of integration depend on the ratio between r and ct, and are the k 
interval either from - 1 to + 1 or that given by the vanishing of f ( z) for z = rk - ct = 0. 

B 

J 

FIG. 1 

II 
It is easily seen that t = 0 is the time at which the wave is focused on the 

axis, so that t is the time calculated from the instant of focusing. The conven­
tional rt diagram is shown in Fig. 1. Line I ( or r = - ct) is the incident 
wave, and line II (or r = +ct) is the reflected wave. Region A (where ct < 0 
and r < - ct) contains the unperturbed gas before the incident wave front. Re­
gion B (where ct < 0 and r > - ct) contains the gas behind the wave front. 
Region C ( where ct > 0 and r > ct) contains the gas before the reflected 

*The factor % in Eqs. (3) and (4) is introduced for convenience in writing (5) 
and (6) and those that follow. 
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wave front. Region D (where ct > 0 and r < ct) contains the gas behind the reflected wave front. 
In region A, we have z > 0 and f = 0 throughout the interval -1 < k < +1, so that p = 0 as is to 

be expected. 
In region B we have -1 < ct/r < 0, so that 

ctlr 

p =a(-ct)" \ (-ftk-lrdkJVI-k". (9) 
-~[ 

In region C we have 0 < ct/r < 1, so that 

cf/r 

p=a(ct)n ~ (1--itkrdkfV1-k2 • (10) 
-1 

In region D we have ct/r > 1, so that 

+1 

p =a (ct)n ~ ( 1- ~ kf dk 1 V]=k2. (11) 
-1 

As follows from dimensionality considerations, in all regions the solution is of the form 

p=a(!ct!)ny(rfictl)=ar£o!f(S), rf=!cfi, S=rjr 1, (12) 

which means that it is self similar for arbitrary values of n. We have used simple quadratures and have 
not integrated the differential equation, but have been able to obtain a whole family of self similar solu­
tions depending on an exponent n each of which build up according to different laws and have different 
pressure profiles determined by the dimensionless function tJ;. 

It should be borne in mind that the function in Eq. (12) is different in the different regions A, B, C, 
and D, so that it depends not only on S but also on the sign of the time. This, of course, does not de­
stroy the self modeling property of the solution. 

3. CHOICE OF THE EXPONENT FROM INITIAL CONDITIONS 

Let us find the pressure profile in the incident wave. According to Eq. (9), in region B we have 

-1/S 

Ya(S) = ~ (-kS-J)ndkjVrJ-k2 , S> J. (13) 
-1 

• 
If we let the variable of integration be y = ( -kS - 1)/(S- 1), we obtain 

a 

( /,/ ' S-1 ) 'fa (S) = (S- Jt+'f, (S + 1)- '!2 ~ yndy V (I - y) ( 1 + s + 1 Y . (14) 

'-----',---$ 

b 

0 

In the neighborhood of the wave front with 
S - 1 « 1, the integral approaches a limit 
given by 

1 

~ yn (I - y)-'!, dy, 
0 

'-----'---S so that the pressure profile is given by the 
~ factor (S - 1)n+ 1fi. When n > - Y2 we are 

FIG. 2 
dealing with a gradually increasing pressure 
(Fig. 2a), when n =- %, there is a finite dis­

continuity (Fig. 2b) and when n < - Y2 the pressure on the front is infinite (Fig. 2c). 
Thus a shock wave with a steep front and a finite pressure discontinuity is described by the solution 

with index n =- %. As has been shown by Zababakhin and Nechaev, the amplitude increases as rf1fi as 
the wave converges (compare with Eq. ( 12)). One may have expected such a result from the fact 
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that the acoustical energy of a unit volume is proportional to p2, and the area of a cylindrical wave is 
proportional to rf so that when n = - ~ the acoustical energy p2rfo is constant in the layer of thick­
ness o about the wave front. 

We note that these concepts are applicable* also when there is no finite discontinuity, or when n cf. - ~: 
the pressure is proportional to rf at similar distances (for a given S), but at equal distances from the 
front, that is when s = 1 + o/rf the pressure for any n is proportional to r£1/2. 

Let us return to the case n = - ~. for which 

(15) 

When S = 1 we have 

(15a) 
' 

It is easily seen that behind the wave front the pr•essure drops with a finite derivative, as shown in Fig. 
2b. Far from the front we have, for large S, 

P -all1 'r/:) = arVr. 
As one may have expected, the pressure far from the front is independent of the location of the front. 

4. THE REFLECTED DIVERGING WAVE 

By treating a cylindrical wave as a superposition of plane waves we can clarify the question of the 
uniqueness of the solution after reflection. This follows from the fact that none of the plane waves have 

Pref 
I 
I 

~----+---------$ 

a 

~----~--------$ 

b 

singularities on crossing the axis at time t = 0. 
Let us write the expressions in regions C and D 

for n = - %, namely 

I iS 

p = ar{''"l>c (S), ljlc = ~ dk IV (l - k2 ) (I - Sk), S > I; (16) 
-1 

+I 

p = ar{''"!>D (S), lj~D = ~ dkiV (l -k2 )(1-Sk), S< I. (17) 
-I 

When S = 1 both integrals approach 

FIG. 3 +I 

~ dk I (I - k) VI + k; 

and diverge logarithmically at the upper limit. -I 

It is easily shown that when IS - 11 = € « 1 both expressions (16) and (17) give (up to terms which 
vanish as € approaches zero and may be different for t/lc and t/ln)t 

1 32 
'" = ·~ =-In- (18) TC •D V2 e 

*The elementary concepts of geometric acoustics are applicable for the following reason. Close to a 
wave front on which the pressure or its derivatives undergo a discontinuity, harmonic analysis gives the 
pressure increase in terms of the asymptotic values of the short waves for which A-- 0. Thus the con­
dition A/rf « 1 for the applicability of geometri·c acoustics is fulfilled. 

t To show this, let us set S = ( 1 - €) - 1 in (16) and S = ( 1 + €) -n in (17) and break up each integral 
in (16) and (17) into two parts J 1 from - 1 to 1-· a and J 2 from 1- a to the upper limit, where a is 
chosen such that 1 » a » €. In J 1 we set € = 0 with an error of order € I a, in which case the integral 
is elementary and equal to 2-1/21n ( 8/a). In J 2 we may replace v'T+l{ by ..f2 with an error of the 
order of a. Then J 2 is elementary and given by (up to small terms of the order of € and € ln €) 
J 2 = 2-1/2 cosh-1 (2a/€) both for (16) and (17). 

When a» € 
J2 = 2-'I•In (4aje), ~ = J1 + J2 = 2-'1' In (32/e), 

so that a drops out of the expression for t/1· 
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This verifies the logarithmic divergence of the pressure in the reflected wave as found previously by 
Zababakhin and Nechaev. 

541 

If on the incident wave the pressure is Pine on the wave front at a given distance rf from the axis, 
then on the reflected wave 

Pine 32 r f 
p. f = - In ---''-:-

re 7t I r- r f I (19) 

becomes infinite symmetrically before and behind the front rf = ct (see Fig. 3a). 
This result, which has been obtained in the acoustical approximation, is known to be invalid if the pres­

sure according to (19) is of the order of p0, the absolute pressure of the gas in which the wave is propa­
gating. A better evaluation can be obtained by finding the radius at which the incident plane wave can no 
longer be described by acoustical laws, that is 

(20) 

where a is the constant in Eq. (15a). 
In the region of applicability of the acoustical approximation, however, that is if rf » r 0, the acousti­

cal expression (19) is applicable only when I r - rr I > r 0• From this some simple operations give the 
maximum pressure in the reflected wave of the order of 

(21) 

Here as in ( 19) Pref and Pine refer to the same distance from the axis. 
Accounting for the deviation from the acoustical approximation also destroys the equality of the pres­

sure at equal distances before and behind the wave front. Figure 3a gives a schematic diagram of the 
pressure profile when nonlinearity is not accounted for, and Fig. 3b gives the pressure profile with the 
deviations from the acoustical approximation. 

When the reflected wave is sufficiently far from the center, rf » r 0 and the pressure at the center 
can be calculated by the acoustical theory. It is clear that a perturbation in the entropy will not interfere 
with a smoothing out of the pressure over a region of the order of rf· One then obtains 

p(O, t) = ao.fVct = V2Pinc(-t). (22) 

We note finally that a similar method for constructing self similar solutions can be used for the spher­
ical problem. In this case, however, when the pressure undergoes a finite discontinuity in the incident 
wave there will be only a finite discontinuity in the wave reflected from the center. 

The difference between the cylindrical and spherical cases in the acoustical approximation is clearly 
related to the difference in wave propagation in spaces with even and odd numbers of dimensions, as has 
been mentioned by Courant. 3 

I take this opportunity to express my g;ratitude to E. I. Zababakhin and V. A. Aleksandrov. 

1E. I. Zababakhin and M. N. Nechaev, J. Exptl. Theoret. Phys. (U.S.S.R.) 33, 442 (1957), Soviet Phys. 
JET:P 6, 345 (1958). 

2 G. Guderlye, Luftfahrtforschung 19, 3 (1943). Cited by Courant and Friedrichs, Supersonic Flow and 
Shock Waves (Russ. Transl.), IlL. 

3 R. Courant, D. Hilbert, Methods of Mathematical Physics (Russ. Transl.), Gostekhizdat, 1954, vol. II. 

Translated by E. J. Saletan 
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It is shown that the bOlmd states of an electron and positron may be studied by examining the 
poles of the photon propagator. 

WE consider the bound states of an electron and a positron. Starting from the Bethe-Salpeter equation 
in the ladder approximation, and taking Fourier transforms of the wave-function tt; af3 ( 1, 2) and of the 
functions SF, DF, we obtain the momentum -spaee equation 

(1) 

Here n = 1, 2 denote solutions of the Dirac equation with positive energy, n = 3,4 those with negative 
energy, and 61 = 62 = 1, 63 = 64 = - 1. The second term in Eq. (1) is the exchange term. We define the 
three-dimensional amplitude by 

an,n, (p) = ~ An,n, (p) dpo. 

We obtain the adiabatic approximation1 from Eq. (1) if we replace DF by JDF (p) 6 (Po) dp0• The first 
non-adiabatic approximation is obtained by substUuting the adiabatic expression for An1 n2 ( p) on the 
right of Eq. (1) and integrating with respect to Po and Po· Neglecting the minus particles, we have the 
old Tamm -Dancoff equation for positronium. We are interested in the contribution of the exchange term. 
After dropping tensor terms and integrating over angles, we obtain the equations for the triplet s-state 
(at a2 = 1 ), 

a•(p) = 1 ~fK, (p,p',e:W)a"(p') -f- K2 (p,p',e:W)a-"(p') _ 4[a"(p') +a-"(p')l} ,2 d, 
' I '2£ -~W 2E -e:W W 2 (2E -oW) P P' ' p p p ~ 

Here €=1 fortheplus-component (a++), and E=-1fortheminus-component (a--); i\=e2/4r1-= 
1/13711'. 

In the adiabatic approximation 

K ( ' lV') K _1_Jn p+p' 
I p, p ' 8 w' = 2 = pp' I p -- p' i . 

and in the first non-adiabatic approximation 

1 P+P'+EP+EP,--e:W _ 1] P+P'-i-Ep+EP, 
K, =---;In' '. ' E , E w' K.- ' n, , + E + E . pp I p -- p I T p I - p' -- e: " pp I p- p I 'p p' 

We introduce the notation 

\ '2d ' z = ~ 4 [a• (p') + a-• (p')l P w~ 

and look for a solution of Eq. (2) of the form 

a3 (p) = IT• (p, 'W) x/(2F o- s\¥1 ) + g• (p). 

Substituting this ansatz into Eq. (2), we find that rE satisfies 
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(2) 


