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The sum of the Coulomb interaction between atomic nuclei and the change in electron energy 
connected with the mutual approach of the nuclei is taken as the interaction potential. The 
electron energy is computed on the basis of the statistical model. 

I. It was shown in a previous article1 that the energy H0 of electrons, in the approximation of the 
Thomas-Fermi statistical model and for the pres,ence of two nuclei, lies between the two values H and 
H1, which differ by not more than 5 per cent: 

_1_ _ I {' [-~ ( )o/o _ _1_ ( 3;, _ 3;,) ( >] _ _1_ (~ ~) ( >} d e' H - .\ 1' 5 Pol+ Po2 2 Por-+ Po2 Po1 + Po2 2 r1 + r2 Pol+ Po2 v, 
( 1) 

.1 H 1 = q) [_1_ (o'1• + p'l•) (p + p ) ---52 (p'1• + p'/, Y~J- -2!_ (~ + ~) (Por + Do">} dv, e' j 1 ' 2 ,-01 02 01 02 01 02 r 1 r2 • • 

where }.. = Y2 ( 3~ )213 n2/me2 = 2.52 x 10-8 em, Z 1e and Z2e are the nuclear charges, Pod r 1 ) and 
p02 ( r 2 ) are the Thomas-Fermi electron densities in the atoms without consideration of the mutual inter­
action, r 1 is the distance to the nucleus of the first atom, r 2, to the nucleus of the second atom. 
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The relative difference between H and H1 decreases montonically to zero upon increase in the dis­
tance between the nuclei from zero to infinity. 

Under the condition that the electrons are always in the ground states, we have for the interaction po­
tential between the atoms, in accord with ( 1), U 1 ( R) < U 0 ( R) < U ( R), where 

U (R) = e2Z1Z2/R + H- H (oo), U1(R) = e2Z1Z2/R + H1 - HI(-x:). (2) 

It is evident that as R- 0, Pot- 0, where p 02 differs from zero; conversely, for r 1 - ""• 

~ 1/r~. Therefore, 

f.- U (R) = z;• +~{A [i- (P01 + P02)~ - { (P~i + P~2) (Pol+ Po2) - ~ (P~i + P~2) ]-{ (~ Po2 + ~ Po1 )} dv, 

(3) 

ZdR - f r11 p02 ( r 2) dv is the Thomas-Fermi potential of the second atom at the distance R. Therefore, 
we can write (3) in the form 

} V(R) = ZJ~" [ Z ( zi• ~)+X ( Z~' ~ )j +A~ [ i (P01 + P02)'1•- { (P~i + P~~) (P01 +Po.)- fo (P~i + P~2)] dv, 

e~ U 1(R) = ZJ~" [X ( zi• ~) + X ( z;. ~)]+A~ [ + (p~ + P~) (P01 + Po2) - { (p~ + P~)'/,- ~ (p:1 + P~2)] dv, (4) 

a= (9r.2fl28)''•h 2jme2 = 4.68-10-9 ~m, 

where x (x) is the Thomas-Fermi function, the tabulation of which was taken from the book of Gombas.2 
The densities p01 ( r 1) and p 02 ( r 2 ) are expressed in terms of the Thomas-Fermi function 

( ( z, (z't, ,, ))% 
Po1 r.1) = r,"A ·x 1 a ' 

and similarly for P02 ( r2 ). 
2. If we write the potential U 0 ( R) in the form 

then for small R, 

f I I 59 . 3 (Z1 + Z2) ~ - z{> - Z~ R 
o~ - · x+ · · ., x =-;::- z z -

1 , • a 
(5) 

This follows from the fact that for R - 0, U ( R) differs from the Coulomb interaction by the difference 
of the electron energy at R-oo and R = 0, which, in accord with the Thomas-Fermi model, are respec­
tively equal to 

I 59 3 (Z +Z )'1•e" d 159 3 (z'''+ Z' 1')~ - . 7 1 2 a an - • • 7 1 2 a . 

The fi1=st two terms in (5) coincide with the expansion of the Thomas-Fermi function of argument x. 
With the aid of perturbation theory, we can obtain,3 for Z2 /Z 1 - 0 or Zt/Z2 - 0: 

( "R) ('I.R) fo(R)--;.x Zta or fo(R)->x z.·a, 

which coincides with (5) for R - 0 under these limiting conditions. Obviously, fo ( R) ought to be a 
symmetric function relative to a substitution of Z2 for Z1• 

We now consider the more general expression for the electron energy 

~ H (R = ~ \ 1. ~ dv _ I (~ + ~) dv + ~I\ p (f) p (r') dv dv' 
e• 5 ) p .) r1 '• p 2 .).) I r- r' I 

The density ought to be such that H is minimal. Therefore, 

~~-I ~dv=2.aHo. _l(~+~)o dv =z,aH +~aH 
5 .) Po e• a"A ' .) \,, r2 • 0 e2 az, e2 az; 

(6) 

(7) 
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It was found in Ref. 1 [Eq. (7)] that 

Hence, by virtue of (7), we have 

(8) 

From (8), H0 can be written in the form 

(Z1Z2e2/R) 6> (Z{'R/a, Zi'R!a). (9) 

Consequently, U 0 ( R) also reduces to the same form. 
3. In the table below, the screening functions f ( R) and f1 ( R) have been computed as functions of the 

argument x [Eq. (5)] for the ratio a= Za/Z 1 = %. %, 1. 

0.~ o.o 0.7 1.5 2 3 

i 
0 i z(x) 0.79 0.72 0.61 0.52 0.425 0.315 0.242 0.158 0.079 

lfJ f (x) 0.80 0.73 0.61 0.52 0.42 0.31 0.23 0.14 0.063 

t;J {1(x) 0.79 0.71 0.59 0.50 0.40 0.28 0.21 0.12 0,052 

2/ 31 f (x) 0.80 0.73 0,61 0.52 0.42 0.31 0.23 0.14 0 .. 056 

2/
31

1 f1(x) 0.79 0.71 0.5 0.1•9 0.39 0.28 0.20 0.12 0.046 

1 f (x) 0.80 0.73 ().()[ 0.47 0.42 0,30 0.22 0.13 0.055 
1 f1(x) t0.7U 0.70 0.58 0.44 u.:o!i 0.2K 0.20 0.11 0.046 

0,046 

0.026 

0.024 

0.026 

0.021 

0.028 
O.W4 

10 

0.0244 

0,013 

0.010 

0.011 

0.008 

O.Ot.'i 
0.012 

-------

The integrals in Eq. ( 4) were 
computed with an accuracy ,..., 2 per 
cent. These integrals are negative 
and for large values of R are 
close in value to the first term in 
Eqs. (4). Therefore, the error in 
computing f and f1 amounts to 
about 10 per cent at x ,..., 10. More­
over, at some points there are evi­
dently small random errors, be­
cause the computation was carried 
out "by hand" by a single person. 

Since the statistical model is generally valid only with accuracy ,..., 20 per cent, these errors have no sig­
nificant importance here. 

It follows from the table that the screening func:tion f0 ( x), whose values lie between f ( x) and f1 ( x) 
for large values of x, differs appreciably from X ( x) even at a = %,. This corresponds to fo ( x) for 
a-o. For x=10, theratio f0 (x)/X(x) is ,...,~12 • Furtherchangeof a upto1doesnotleadtoasig­
nificant change in f0 ( x). 

We can, however, introduce another scale factor in the definition of x. This factor would coincide with 
Eq. (5) when Z2 /Z 1 or Z1 /Z2 tended to zero andl would reduce for this f?ame value of· R to smaller 
values of x in the old definition. Then f ( x'), for the new definition of x, will differ less from x ( x') 
at larger x'. For example, the Bohr scale factor ( z¥3 + z~/J) gives the following changes in X for 
various values of a: 

i.e., if we introduce x'jx = 1, 0.93, 0.92, 0.92, 

x' = V z{· + zi· R/a, 

in place of the value of x defined by Eq. (5), then at a = 0, x' = x, while at a = 1, x' = 0.92 x. Then the 
values of f ( x') in the table above remain practically unchanged for x' < 0.2, in the interval 0.5 < x' 
< 3, they increase by ,..., 8 per cent, and for x',..., 7 -10, they increase by ,..., 20 per cent. The difference 
between f ( x') and X ( x') will be much less. It would be even better to introduce a scale factor by the 
relation 

Then the ratio x' /x will be 
1' 

x' jx = 1, 0.84, 0.82, 0.82. 
In this case, f ( x') differ from x ( x') by not more than 20 per cent throughout the entire range of varia­
tion of x' from 0 to 10. Since 
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then, for x' = 10, even for Z1 = Z2 = 100, R = 0, 64 x 10-8 em. However, at distances R > 10-8 em, the 
calculation of the interaction potential of atoms on the basis of a statistical model loses its meaning. 

Thus, in the limits of accuracy of the Thomas-Fermi statistical model of the atom, the interaction be­
tween atoms at distances between atoms less than 10-8 em can be described by the potential 

(10) 

where x (x) is the Thomas-Fermi screening function. 
This fact, that the screening function can be expressed approximately as a function a single argument, 

allows us to compute (within a suitable interval of energy of relative motion and for suitable scattering 
angles) the effective differential scattering cross section at once for an arbitrary pair of colliding atoms. 

In conclusion, I want to thank Academician M. A. Leontovich, Prof. A. B. Migdal and V. Galitskii for 
useful discussions of the research. I am very grateful to G. I. Biriuk for the computation of the integrals 
of Eq. (4). 
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A one-parameter family of self-similar solutions for cylindrical motion is constructed in the 
acoustical approximation. This construction is accomplished by superposition of plane waves 
and is expressed in elementary form by quadratures. For motion with a finite pressure dis­
continuity on the wave front of a converging cylindrical wave, the results agree with those ob­
tained previously. 1 It is found again that the pressure in the reflected wave is infinite. The 
maximum pressure is estimated and allowances are made for the deviations from the acous­
tical approximation for large amplitudes. 

ZABABAKHIN and Nechaev1 have treated the propagation of a weak cylindrical shock wave and its reflec­
tion from the axis in the acoustical approximation.* Their solution for the reflected wave has an unex­
pected property: the pressure on the front diverges logarithmically, and is the same before and behind the 
front, that is 

(where p is the pressure change, and the solution is valid only for p « Po). 
No such singularity occurs when a spherical acoustical wave converges onto a center and is reflected, 

or for strong cylindrical and spherical shock waves.2 It is therefore desirable to obtain the result of 
Zababakhin and Nechaev differently, by a method in which the necessity for their solution would become 
clearer. 

*I take this opportunity to express my gratitude to the authors, who communicated their work to me 
before its publication. 


