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We compute the cross sections for elastic and inelastic scattering of neutrons by molecules 
consisting of two identical or two different atoms. The general formulas are used to treat 
the scattering by T2, HT and DT. Comparison of experimental data on the scattering cross 
sections of these molecules with our formulas makes it possible to determine the amplitudes 
for scattering of neutrons by tritium. 

1. SCATTERING OF NEUTRONS BY MOLECULES CONSISTING OF TWO IDENTICAL ATOMS. 

ScHWINGER and Teller1 and Hamermesh and Schwinger2 developed the theory of slow neutron scattering 
by molecules of ortho- and parahydrogen and deuterium. Using the Fermi quasipotential, 3 they expressed 
the neutron scattering cross sections of these molecules in terms of the amplitudes for neutron scatter­
ing by H and D nuclei. 

In this section we shall treat molecules consisting of two arbitrary but identical atoms. (We shall refer 
to such molecules as "symmetric" molecules in contrast to "unsymmetric" molecules which contain dif­
ferent atoms.) 

The interaction energy of the neutron and the symmetric diatomic molecule can be written as:2 

A 27'1:1;2 A + 1 1 1) ( )( )] '3 ( ) . "I . h V= ---xf-A- 251 + 1 [(s1 + as,+'!,+slas,-'f,+ u•s1 as,+'f,-as,-'f, o r-r1 + Simiartermswit l--o>-2 

=- 2~2 
A 1 1 251 ~ 1 {[(s1 + l)as,+'f,+s1as,-'/,+~hu·s)(as,+'!,-as,-'f,)J[o3 (r-r1)+o3 (r-r2)] 

+ --} [u·(s1 - s2)l(as,+'f,- as,-'/,) fo3 (r -·· r1) - o3 (r- r 2)]} (s = s1 + s2). 

(1) 

The quantities as1 + t/2 and as1 -112 are the neutron scattering amplitudes for an atom with total spin 
St + 1/2 and s 1 - 1/2, respectively; 1/2 a, s 1, s2 are the spin operators for the neutron, the first atom 
and the second atom; r, r 1, r 2 are the respective radius vectors; A and s 1 are the atomic weight and 
spin of each of the atoms, and M is the mass of the nucleon. • The wave functions of the initial and final state of the system (if we treat the molecule as rigid rotator 
are 

The factor eiko·r describes the neutron incident on the molecule in the center of mass system; 
e-iko·(rt+r2)/2 describes the motion of the center of mass of the molecule with momentum -k0; YjJ.! is 
the angular part of the wave function for a molecule with total angular momentum j and projection JL; 

(2) 

.J 6 (£- r 0)/r0 is the radial part of the wave function, corresponding to internuclear distance ro; Xa> x sMs 
are the spin functions of the neutron (spin 1/2, projection a), and the molecule (spin s, projection Ms). 
The notation for .Y2 is similar. 

We first treat scattering processes in which YjJ.! and YyJ.!' have the same parity. In this case the 
parities of x sMs and x s'M~ also coincide. We may therefore limit ourselves to terms in (1) whose spin 
parts are 1 or a •s. Since both these operators commute with s2, s = s'. 

For this case the space integral which occurs when we calculate the matrix element of U between 
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>¥2 and >¥1 is 

Expanding the product of the spherical harmonics in a Clebsch-Gordan series and writing cos (q·£/2) 
as a sum of Legendre polynomials, we easily find 

~~~, = 2 V(2j + 1)(2j' + 1) ~ (-l)fl'cJgro i1fz(q;o )c}~J.~; Pzfl-fl'( f) 
even l 

(C~y0 and cf:j;_:;' are Clebsch-Gordan coefficients, Ptp. -p.' are spherical harmonics normalized to the 
value 41!" I (2£ + 1), f£ (qr0/2) are spherical Bessel functions). 

We want the square modulus of this expression, summed over p.' and averaged over p.: 

1 "" 1 /\'), [2 = 4 (21"' + 1) ~ (C!o )" 2 (Q'o) (2 · + 1\ .LJ II , LJ iOi'O " fz 2 · 
1 ' fl'fl flfl even l 

The calculation of the various spin sums and the summation over a, a', Ms and M~ is done by the 
standard methods; we give the final result for the differential cross section for scattering with j - j' 
(where j and j' have the same parity) 

dcr(l)ii' k (A+1)2 16 [(( 1) )2 s(s+1) ( )"](2., 1 "" zo 2(qr0) dQ = T (2A+1)2 (2s, + 1)2 s, + as,+'J, + s,as,-'/, + --4- as,+'f,- as,-'J, • 1 + ) .LJ (Cioi'o)2 fz 2 . 
o. even l 

(3) 

For transitions j - j' with change of parity, we must use only the term proportional to a. (s1- s2) in 
(1). In this case, the expression for the cross section will depend on the spin s' of the final state. 
Obviously, we want to sum the cross section over those values of s' for which the given j' can occur 
(for even j' and half-integer s 1, these are s' = 0, 2, .•. 2s1 -1; for odd j' and half-integer s1, s' 
= 1, 3,, .. 2s1; etc.). In carrying out the summation, we can formally sum over all s', since the values of 
s' which don't match give null terms. 

This remark enables us to simplify the calculation of the spin sum 

2 (2s + 1) 

The calculation of the space integral is just like the one done previously, and the final result for the 
scattering cross section with j - j' and change of parity is 

dcr~7! k (A+ 1}2 16 [ 1) s (s + 1)] ( )2 (2 ., 1) "'0 lo 2 2 (qr 0 ) 
(i['i: = T (2A +1)2 (2s + 1)2 s, (s, + - -4- as,+ 'I,- as,-•t, 1 + .LJ (CiOro) fz 2 • (4) 

o 1 odd l 

To get the total cross sections, (3) and (4) must be integrated over all solid angle. The procedure is 
the same as that of Hamermesh and Schwinger.2 The result is 

(I) (A+1)2 1 64-rt [(( 1) )2 s(s+1)( )2](2"' 1)A. 
"ii' = (2A + 1)2 (2sl +1)2 (koro)2 s, + as,+' I,+ s,as,-'J, + -4-- as,+'f,- as,-'/, 1 + ii'• 

<2> (A+ 1)2 1 64-rt [( s (s + 1)) ( )2] ( 2 ., 1) A . A [c· ~ czo )" ]x. 
Ojj' = (2A-r1)2 (2s, +1)2 (koro)2 s, (s, + 1)- -~.-! - as,+'J,- as,-•j, 1 + fi'• ii' = m 2x-+ ( ioi'O " Fz(x) x:; 

I k- ko I To • 
x, = 2 , 

(k + ko) 'o 0 X 2 = 2 - ; Fz (x) = , l = 0; Fz(x)=x2 (f~+fi), !=1; 

- 2 2 1 2 :1 2k + 1 2 ( 
1--1 ) 

Fz (x)- x fo + -r fz + ~' k (k + 1) h. , l > 1; Cin x = In x + C- Ci x; (5) 

where Ci is the integral cosine, and C the Euler constant. (2) 

The next problem is the averaging of the cross sections a~jl,' and a jj' over those values of s which are 
present in a gas for a given value of j. For example, for half integer s1 and even j the gas is a mix­
ture of molecules with s = 0, 2,,, ., 2s1 -1. Then the total number of initial states is 
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The statistical weights of the individual states are 

s = 0, 2 ' 2s1 -1 
g = 1 js!(2s1 + 1), (2°2 + 1) js1 (2s1 + 1), o 0 0, (4s1 -1)/ s1 (2s1 + 1). 

In this case, after averaging, s(s + 1) should be replaced by 

2Sl-l 

"" 2s+1 s(s-t-1)~ ..:::..J s(s-t-1) sr(251 + 1) =(s1 -t-1)(2s1 -1)o 
(even) s=O 

If s 1 is integral and odd, the replacement is 

s (s + 1)-~(s 1 + 1) (2s1 -1)o 

Similarly, for St half integral, odd, or St integral and j even, 

s (s + 1)-c•(s1 + 1)(2s1 + 3)0 

We give the cross sections for the following three processes: (1) elastic scattering, j = 0 - j' = 0; 
(2) elastic scattering, j = 1 - j' = 1; and (3) collision of the second kind, j = 1 - j' = 0. We assume that 
the incident neutron energy E is below the threshold E 1 for excitation of the first rotational level of the 
molecule (cf. Refs. 1, 2). 

E _ [cc 1) )2 J (sl+1J(2sl-1)14 }< _ )2 ]F (E) a~:~ ( ) -· s1 + as,+' I• + s1as,-'f• + \ 51 ( 2 51 + 3) I 4 as,+'lo as,-'), ~ :f , 

(E) ( )2 F (E.)o F (E)- 647t (A-t-1)2 1 Co 2 " 
a0 - 1 = Gs,+~t,-Gs,-'fz o-1 ·' o-o -(zs1 -t-1)' (2A-t-1)'~ In <;, 

F (E) - 64:1: (A+ 1f _i_ [c·o 2"- "2( ~ f2 (c) --L f2 (c)+ __!_ f2 {") .)J 
1-1 - (2sl+1)2(2A-t-1)2 ~-· .m ' t; \3 o . ' 1 . 3 2 <; , 

F (E) 64 7t (A + 1 )2 { S] (2 SJ + 1) I 4 } 1 [C" 2 2 (f2 + f2) l'' 
o-1 =(2s1+1)2 (2A-t-1)2 (s1 -f-1)(2s1-t-1)/4 ~ In x-x 0 1 '' 

~ = k0r0 , ~1 0 2 = 1/ 2 (kr0 + kor0). 

In the formula for a 0 _ 0, the upper expression i.n the curly brackets is taken for half integral St in 
t-o 

a0 _ 0 and for integral s1 in a1 - 1; the lower expression applies when s 1 is half integral in at- 1 and 
when s 1 is integral in a0 - O• 

(6) 

(7} 

In F 0 - 1 (E), the upper expression should be used for half integral St and the lower for integral St. 
Following the procedure of Ref. 2, we express t, ~t and ~2 in terms of E and Et 

• 4 ~/AE E 1 [•/t2+ 8 -'] 
t; = 2 A + 1 V £; ; ·lo2 = 2 V ' 2 A + 1 +' 0 

(8} 

We give the expressions for a0 -o• a1-t and a0 ~-t• which are obtained when F o- 0 (E), F t -t (E) and 
Fo-t (E) are expanded in powers of E/Et up to first order terms, for the T2 molecule: 

a0 •. 0 = 1/ 4 (3 a1 + a 0 ) 2 Fo+-O (E), a 1 _ 1 = 1/ 4 [(3 a1 + a 0) 2 +2 (a1 - ao)2 ] F1-1 (E), ao -1 = (ai- ao)2 Fo -1 (E), 

Fo-o (E)~ F1 _I(E) ~ 2~~ 7t ( 1- 4
89 E~) , F0 .I(E) ~ 64~7t ( 0,03201 V ~ + 0.06413 v:~) . (9} 

The results for H2 and D2 were given in Refs. 1 and 2. 
Finally, we can tackle the problem of averaging the cross section over the thermal motion of the gas 

molecules. The calculations are exactly like those of Hamermesh and Schwinger.2 For the case of T2, the 
functions F 0_ 0, F 1-t and Fo-t are replaced by Go-o• Gt-t and Go-t• For kT < 6E, 

Go-o(E)~GI-I(E)= 2~~~7':[1-t- 112 !IJ -:9 i 1 (1++k; +i8(kJY)], 
64 1t [ ~ FE,-- ~ /£ ( 1 kT )] 

0 0 - 1 (E)= 4u 0003201 V 7;;- + 0°06413 V E, 1 + 4 y o (10} 
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2. SCATTERING OF NEUTRONS BY MOLECULES CONSISTING OF TWO DIFFERENT ATOMS 

In this section, we treat neutron scattering by non-symmetric molecules. The ground state of a non­
symmetric molecule always has rotational quantum number j = 0, so that when the energy E of the in­
cident neutron is insufficient for excitation of rotation, of three processes treated above the only one 
which remains is the elastic scattering with j = 0- j' = 0. 

In addition, since the assignment of j now imposes no limitations on the molecular spin s, the aver­
aging of the cross section over s and s' can be done very simply. In fact, in the present case we need 
only calculate the sum 

(2j+1)2(2s1
1
+1)(2s2 +1) ~ 

(ss' M5 Ms'"''P.P.') 

over all values of ss' MsM8aa'I.LI.L' (ajj' is the cross section for the transition from jj.LSMsa to j'j.L's'M8a'. 
The interaction energy of the neutron and molecule is now 

A 21t!2 {A1+1 1 ( 1) •3( ) A,+ 1 1 ( + 1) "3( ) U = -~ -----x;- 2 51 + 1 [ s1 + as,+'l• +51 as,-'/,] o r- r1 + ~ 2 52 + 1 [ 52 as,+'la + 52as,-'/,] u r- r 2 

[the notation is the same as in Eq. (1)]. The wave functions of the initial and final states are: 

( 1 ) Va(l ) (I) Vil(l-ro) '1'\ = exp {ik0·(r- rc)} Y 1P. -T , 0- 'o X.aXsMs' l£"2 = exp {ik~r- rc)} Yi'p.' T 'o 

where now 

The calculation of the spin sums is somewhat lengthy, but entirely trivial. The expression for the 
j - j' cross section now does not depend on the relative parity of j and j', and has the form 

daii' k (A,+ A 2)2 ~, 1 
(ill"= To (A 1+' A2 +1)' ;;_, (2 j + 1) {j B !2 +(I C !2 +I D 12) [51 (51+ 1) +52 (52 + 1)] 

(11) 

(12) 

1 A;+ 1 1 \ • 
C=z-(~I/1-1-~2/2), ~;= A; 25;+ 1 [asi+'i,-asi-'1,], D=z-(~1/1 -~2/2), I;= ~cp2o3 (r-r;)rp1drdr1dr2, 

where cp 1 and cp 2 are the coordinate parts of the wave functions (12). 
The calculation of the integrals is completely analogous to those in the first section. The result is 

<2 i ~ 1) ~I l1l2 = (2 j' + 1) ~ (cjg,,o)2 n(qf"), <2 i ~ 1) ~! I2l2 _. (2 j' + 1) ~ (C}gro)2 t7(q•'o), 
p.p.' l p.p.' l - 2 

(2 j 
1+ 1) ~' 1~12 = (2 j ~ 1) ~' / 1 /; = (2 j' + 1) f ( -1) 1 (Cjgj'o)2 ft (q1; 0 ) fz (q•;o), .q1 = A12~2A 2 (k0 - k), 

2A 1 

q2 = Al + A2 (ko- k). 

The expression for the differential cross section is 

da,,, k (A,+ A2)' G ( 1) Qtt) ( 1) Q(2l 
iill"='li; (A 1 +A,+1)• [ ii'-l-5t 51+ //'+52 52+ ii'J, 

Gi/'=(2j'+1)t (Cjgi'o)2 [ cctft(q';")+(-1)1cc2/z(q";")T, QW= (2j'+ 1)~ (cjgi'o)2 ~m(q;;o) (i = 1,2). (15) 

The total cross section for elastic scattering, j = 0 - j' = 0, is 
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a="' 2 2 (A,+ A,)4 {i~: ~ ?;. [((s1 + 1) as,+'!,+ s1as,-'J,)2 + S1 (s1 + 1) (as,+'/,- as,-'/,)2] ; 2 Cin 2 A1~ 
A1 A 2 (A 1 + A 2 + 1)' " 

(16) 
+ similar terms with 

where 

i.1 = A 2A,A ' ),, = A 2A, 1: = koro = A,+ A,_ ~ / 2 (A,+ Az) v" E R (c ) ) ) - ~ sin)'~/ sin "A,I dt 
, + , , +A, ' . A1 + A2 + 1 V A1 A1 £ 1 ' ·• '1• '2 - .) t 

=+[In I~: ~~:I + Ci f! A1- ),2 [ ~]- Ci [(1.1 + A2) ~]]. 
0 

Using the well-known expansion of the integral eosine, we find, forE « Et, to terms of order"' E/Et: 

a= (A 1 + A<lo/2 {a,( A1 + 1 )' [ 1- _i__ A2 _±t_~ _!____]-+-a ( A2 + 1 )2 [1- _i_ ~ A,+ A, ..£] 
(A 1 + A2 + 1)2 A1 3 A1 (A 1 +A,+ 1)2 £ 1 · 2 A2 3 A2 (A 1 + A2 + 1)2 £ 1 ( 17) 

S _A, + 1 A,+ 1 r s, + 1 s1 ] [ s2 + 1 52 ] [ 1 2 A~+ A~ A1 + A2 E ]' + ,, ~ ~ L2 s, + 1 Gs,+'lz + 2 s, + 1 as,-'J, 2 s, + li as,+'J, + 2 s, + 1 as,-'/, - 3 A,A. (A,+ A,+ 1)2 £; f 
We have introduced the scattering cross section for the i-th atom 

( 18) 

We apply formula (17) to HD, HT, and DT. (We give the cross sections averaged over the thermal mo­
tion of the molecules.) 

For the HD molecule (ao and at are the scattering amplitudes for H, at/2 and a3; 2 are the amplitudes 
far D) 

For the HT molecule (a0 and at are the H scattering amplitudes, b0 and bt are the T scattering 
amplitudes) 

(19) 

[ 64 256 64 1t ] ( 1 kT ) [1024 4096 1024lt' ] 
aHT = 25 aH + 225 aT + 75' (3 a 1 + a0) (3 b1 + b0) 1 + 8 E - 625 aH + 50625 O"T + 3375 (3 a 1 + a0) (3 b, + bo) 

(19') 

For the DT molecule 

[ 25 1100 25 1t J ( 1 kT ) [125 1000 1625 1t ] 
O"nT = Wan+ 81 O"T + 27 (2 a'l• + a'J,) (3 b1 + b0 ) 1 + 10 E - 2tj8 O"D + 6561 O"T + 8748 (2 a•J 2 + a'J,) (3 b, + bo) 

(19") 

3. INCLUSION OF ZERO-POINT VIBRATIONS OF THE MOLECULE 

All the computations done in the previous sections were based on the rigid rotator model for the 
molecule, i.e., on a molecule having a fixed internuclear distance r 0• This was expressed mathematically 
in the use of ..J {j (l.- r 0)/r0 as the radial part of the wave function, in place of the appropriate oscillator 
functions. Our next problem is to examine the validity of this approximation, and to include the normal 
vibrations of the molecule at least to first approximation. The analogous problem for the hydrogen mole­
cule was considered recently by Drozdov.4 

We shall restrict ourselves to treating the zero point vibrations, since the excitation of higher vibra­
tional levels is much more difficult than rotational excitation. In addition, we shall treat only elastic 
scattering with j = 0 -- j' = 0 and j = 1 -- j' = 1 for symmetric molecules. 

Carrying out the calculations, which are exactly the same as those in Sec. 1, we easily verify that the 
only change from our previous results is that, in formulas (3) and (4), the quantities fi(qr 0/2) are replaced 
by the integral: 
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/1 = ( ~ ~ /! ( 11 )e-~(l-r,)'dl = ( : +~oo fz ( ~ (r0 + r)) e-"''dr, 
0 -00 

where a = 1/x~ = ~LW/l'i, 11 is the reduced mass of the molecule, and w the frequency of zero point vibra­
tion of the molecule. 

To calculate the integral I£ approximately, we expand the slowly varying Bessel function f£ in series 
around the point qr0/2, and integrate term by term. Then Ajj' in formula (5) is changed to 

Aii' = ~ (C}gro)2 [ 2 ~· fF (x) xdx + ( ;: r r /1 (x) f'; (x) x3dx]. 
l Xt x1 

We note that x0 = (1i/~Lw) 112 = (2ti/AMw) 112 , r 0 = (2ti2/AME 1) 112, so that 

(xo I ro)2 = E1 I hw. 

Our computation corresponds to the first approximation with respect to E/l'iw; in order to avoid dropping 
terms of this same order, we must also keep quadratic terms in E/E 1• 

After expanding in series, we get the following final result for T2 [ cf. Eq. ( 19)]: 

Fo~o (E)= 2~~" [ 1- :9 (~ + ib) + 1t7: ( ffJJ ' F1 ~1 (E)= 2~~" [ 1- :9 ( :1 + /~w ) + ;5°.27: (f, YJ · 
The correction may be 2-3% of the leading term which gives the dependence on the energy E/E 1• 

DISCUSSION OF RESULTS 

The results obtained can be used for the solution of an important experimental problem: the determi­
nation of the amplitudes a0 and a1 for scattering of slow neutrons by tritium. 

According to formulas { 9) and { 10), if we know the elastic scattering cross section for paratritium 
{ a0 ..-o), orthotritium { a 1 .._ 1) or the cross section· for scattering with transition of the molecule from the 
ortho to the para state { a0 .._ 1), we can determine the absolute values and relative sign of the amplitudes 
a0 and a1• The common sign of the amplitudes cannot be determined from the values of these cross sec­
tions. {A change in sign of both amplitudes produces no change in the values of a0 .._ 0 , a 1 .._ 1 and a 0 _. 1 .) 

One possibility for determining this common sign is to investigate the scattering of neutrons by mol­
ecules consisting of T and any other atom whose neutron scattering amplitudes are known. The formulas 
{ 19) show how the interference term depends on the common sign of the amplitudes. Unfortunately, this 
term is usually smaller than the other terms appearing in the formula. 

A final decision on the question of determining the common sign of the amplitudes can be made only by 
examining the experimental accuracy attainable. 

In conclusion, I express my profound gratitude to K. A. Ter-Martirosian for proposing this topic and 
for continual interest in the work. 
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