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IT has been shown by Davydov and Filippov1 that by using the Hamiltonian obtained by Ford2 in averag
ing the interaction between the external nucleons and the nuclear core, one can write the equation for the 
collective motion of an axially symmetric even-even nucleus with total angular momentum 11J in the form 

TABLE 1 

Nucleus and 
Energy level 

(kev) 
literature J 

reference Theory I Experiment 

w1s2 2 100.09 100.09 
[4,5) 4 320.3 329.36 

6 641.6 677.6 
0 1101 -
2 1222 1222 
4 1481 1488.6 

Th232 2 50 50 
[6j 4 163 165 

6 332 -
0 710 -
2 770 770 
4 901 -

023• 2 43 43 
[•] 4 141 142 

6 290 295 
0 803 803 
2 855 -
4 966 -

Pu23s 2 44.2 44.2 
[•] 4 147.7 146 

6 304.8 303 
0 935 935 
2 986 986 

1i«>o 
(kev) 

8 

1101 3.48 

710 3,93 

803 4.48 

935 4.73 

d2U.j dC2 - 2CdU.j dC + 2vUv = 0, 

where Uv satisfies the boundary condition 

for C-->- oo. 

(1) 

(2) 

The eigenvalue v of Eq. (1) is not in general an 
integer, and determines the energy € v ( J) of the 
collective nuclear motion by the equation 

s. (J)jnw0 = (v+1/ 2)1(1 + J (J + 1) 1 ()4~4 

+ J (J + 1) ; 6a2~2 + 1;2 a2 (~ _ 1)2, 

~3 (~-1)=J(J+ 1)j31)4 • 

(3) 

Thus the energy of nuclear collective motion for 
each value of J = 0, 2, 4, ••• is determined uniquely 
by just the two parameters w0 and 6, which are re
lated to parameters of Bohr and Mottelson's3 gener
alized nuclear model by the expressions w0 = .J C/B, 
6 = ~(BC/112 )1/4• 

Davydov and Filippov1 investigated the solution 
of Eq. (1) for the case 6 :::: 1. In this note we present 
the results of a solution of this set of equations for 
the case 6 > 1. 

The figure gives a graph of € v ( J )/11 w0 vs. 6; 
the numbers on the curves give the values of J. It 

4 1100 1073 is seen from the figure that when 6 > 2.5, the energy 
spectrum of collective excitations of even-even nuclei breaks up into a set of rotational-vibrational bands. 
In Table 1 we present a comparison of the theoretical excitation energies of the first and second rotational 
band for certain nuclei with the experimental data. We also give the values of 11 w0 and 6 which have been 
used to calculate the theoretical excitation energy. 

In Table 2 we give the 6 dependence of the energy ratios of the first and second (1 and 2) rotational
state sublevels in the first and second (I and II) bands of the rotational states of the nucleus. 

If the energy of collective oscillations is approximated in the form 

E 1 = nliw0 + AJ (J + 1) -BJ2 (J + 1)2, (4) 
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TABLE II 

11.0 11,512.0 1 2.5 1 3.0 1 3.5 1 4.0 1 4.5 1 5.0 

<m/< 11 \1.4811.3911.3611,31 11.2611.21 11,1611,1311.11 

e21 ;e11 [2.17[2.3812.7012.8713.0213.21 13.2713.2913,33 
j 

82ni8 111 1176~2 1612.4312.5212.94 I 3.1613.251 2.2713.31 
it follows from Table n that the moment of inertia I 
of the nucleus in the ~econd rotational band is less 

than in the first. This decrease of I is greater for lower values of o. The quantity a, which determines 
the coupling of rotational and vibrational states in Eq. ( 4), is greater in the second rotational band than 
in the first. Thus if one were to use Eq. (4) to describe collective oscillations, one would need five param
eters, rather than the two that are needed to solve (1) with Eq. (3). 
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GELL-MANN and Pais 1 were the first to point out the interesting consequences which follow from the 
fact that K0 and K0 are not identical particles. 2 The possible K0 - K0 transition, which is due to the weak 
interactions, leads to the necessity of considering neutral K-mesons as a superposition of particles K~ 
and K~ having a different combined parity. 3 In the present note the question is treated whether there exist 
other "mixed" neutral particles (not necessarily "elementary") besides the K0-meson, which differ from 
their anti -particles and for which the particle - antiparticle transitions are not strictly forbidden. 

The laws of conservation of the number baryons and light fermions (or as sometimes called, conser
vation of nucleon4 and neutrino5 charge) strongly limit the number of possible mixed neutral particles. 
Because of the first-mentioned law mixed particles cannot occur amongst the baryons (e.g. a neutron; 
a hydrogen atom etc.), and because of the second law such particles cannot exist among the light particles 
with only one fermion (e.g. neutrino, the systems 1r+e- and 1r-e+, etc.). 

From this it evidently follows that besides the K0-meson the only system consisting of presently-known 
constituents which could be a mixed particle would be mesonium, defined as the bound system (~-t+e-). 
Antimesonium, i.e., the system (~-t-e+), clearly is different from mesonium and, furthermore, the 


