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THE forces between a A 0-hyperon and one nucleon [ ( A0- N) forces], admissible on grounds of isotopic 
invariance, have a range several times shorter than the usual nuclear forces. 1•2 Thus, the forces suggested 
by the experiments on pair production and due to virtual processes with K-meson exchange 

A0 + N-+ N' + R + N-+ N' + AO'' 

have a range 1/mK, i.e., a range about three times shorter than the radius of nucleon-nucleon forces, 
which is of order 1/m7r. However, isotopic invariance allows an interaction in which the A0-hyperon 
exchanges with the nucleon two (in general, an even number of) 7r-mesons: 

AO+N-+ A0'+7t+7t+N-+ AO'+N'. 

One can also conceive of similar 21r-meson forces involving ~-hyperons: 3 

AO+N-+ ~+7t+ N-+ ~ +N'-+ A0' +7t+ N'-+ AO' + N'. 

(1) 

(2) 

(3) 

The forces due to (2) and (3) have a range 1/2m7r. 
The existence of A0-hyperfragments indicates that the ( A0 - N) forces are sufficiently strong to lead 

to binding of a A0-hyperon to nucleons. In this connection it is interesting to determine whether there 
exist ( A0 - N) forces with the usual range 1/m7r• 

Such forces indeed are possible if we consider the interaction of the A0-hyperon with two nucleons in­
stead of one. Thus, the 21r-meson forces between a A0 particle and two nucleons, realizably by virtual 
processes of the form 

(4) 

have a range 1/m7r, since the A0-hyperon exchanges with each of the nucleons only one 1r -meson. This 
conclusion regarding the range of the forces is purely qualitative and follows from the uncertainty rela­
tion for the energy and time, and actually involves no approximations. 

As an illustration it is easy to calculate the potential of the (A0 - N) forces of the type (4) in the 
static approximation. This potential contains the product of the exponentials exp (- m1rriA) exp (- m7rr2A), 
where ri is the distance between the A-hyperon and the i-th nucleon. Thus many-body forces of range 
1/m7r between a A0-hyperon and nucleons are possible, in contrast to two-body ( Aa - N) forces, whose 
range is less. One can therefore assume that the suggested many-body forces may play an important 
role in the interaction of the A0-hyperon with nucleons. 

This hypothesis could be checked by measuring the cross section for the scattering of a slow A0 par­
ticle by a proton and by some simple nucleus such as deuterium or helium. If the present hypothesis is 
true the cross sections should be considerably larger for scattering by nuclei than for scattering by 
protons. 

The author is grateful to M. A. Markov for valuable discussions. 
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IT has been shown by Davydov and Filippov1 that by using the Hamiltonian obtained by Ford2 in averag­
ing the interaction between the external nucleons and the nuclear core, one can write the equation for the 
collective motion of an axially symmetric even-even nucleus with total angular momentum 11J in the form 

TABLE 1 

Nucleus and 
Energy level 

(kev) 
literature J 

reference Theory I Experiment 

w1s2 2 100.09 100.09 
[4,5) 4 320.3 329.36 

6 641.6 677.6 
0 1101 -
2 1222 1222 
4 1481 1488.6 

Th232 2 50 50 
[6j 4 163 165 

6 332 -
0 710 -
2 770 770 
4 901 -

023• 2 43 43 
[•] 4 141 142 

6 290 295 
0 803 803 
2 855 -
4 966 -

Pu23s 2 44.2 44.2 
[•] 4 147.7 146 

6 304.8 303 
0 935 935 
2 986 986 

1i«>o 
(kev) 

8 

1101 3.48 

710 3,93 

803 4.48 

935 4.73 

d2U.j dC2 - 2CdU.j dC + 2vUv = 0, 

where Uv satisfies the boundary condition 

for C-->- oo. 

(1) 

(2) 

The eigenvalue v of Eq. (1) is not in general an 
integer, and determines the energy € v ( J) of the 
collective nuclear motion by the equation 

s. (J)jnw0 = (v+1/ 2)1(1 + J (J + 1) 1 ()4~4 

+ J (J + 1) ; 6a2~2 + 1;2 a2 (~ _ 1)2, 

~3 (~-1)=J(J+ 1)j31)4 • 

(3) 

Thus the energy of nuclear collective motion for 
each value of J = 0, 2, 4, ••• is determined uniquely 
by just the two parameters w0 and 6, which are re­
lated to parameters of Bohr and Mottelson's3 gener­
alized nuclear model by the expressions w0 = .J C/B, 
6 = ~(BC/112 )1/4• 

Davydov and Filippov1 investigated the solution 
of Eq. (1) for the case 6 :::: 1. In this note we present 
the results of a solution of this set of equations for 
the case 6 > 1. 

The figure gives a graph of € v ( J )/11 w0 vs. 6; 
the numbers on the curves give the values of J. It 

4 1100 1073 is seen from the figure that when 6 > 2.5, the energy 
spectrum of collective excitations of even-even nuclei breaks up into a set of rotational-vibrational bands. 
In Table 1 we present a comparison of the theoretical excitation energies of the first and second rotational 
band for certain nuclei with the experimental data. We also give the values of 11 w0 and 6 which have been 
used to calculate the theoretical excitation energy. 

In Table 2 we give the 6 dependence of the energy ratios of the first and second (1 and 2) rotational­
state sublevels in the first and second (I and II) bands of the rotational states of the nucleus. 

If the energy of collective oscillations is approximated in the form 

E 1 = nliw0 + AJ (J + 1) -BJ2 (J + 1)2, (4) 


