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A phenomenological theory for Rayleigh scattering of light in an isotropic visco-elastic medium 
is developed on the basis of the correlation theory proposed earlier by the author for such me
dia. General (i.e., allowing arbitrary dispersion relations for the parameters of the medium) 
expressions (3.1) are obtained for the spectral intensities of the scattered light corresponding 
to various polarization conditions. As an application of the general formulas, an expression 
(4.3) is found for the integrated intensity of the light scattered by isotropic fluctuations (under 
certain assumptions as to the form of the dispersion relations). The case of a slightly viscous 
fluid is treated and the appropriate dispersion correction to the Einstein formula is considered. 

INTRODUCTION 

RECENTLY a large amount of experimental data has been accumulated concerning the Rayleigh scatter
ing of light in liquids; in many cases these data do not agree with the thermodynamic theory of scattering. 1 

Substantial discrepancies are found for different characteristics of the polarized component of the scat
tered light, i.e., the part due to density and temperature fluctuations (so-called isotropic scattering).* 
Thus, the integrated intensity of the isotropic component of the scattered light is, in many cases, less 
(sometimes by 20 - 25 percent) than that calculated by the Einstein formula. The ratio of the integrated 
intensities of the non-displaced line and the Mandel' shtam-Brillouin doublet is considerably greater than 
that given by the Landau-Placzek formula. Discrepancies between experiment and the thermodynamic 
theory are especially marked in liquids which exhibit strong dispersion effects in propagation of sound. 1 

This is, of course, natural since the existence of frequency-dependent mechanical and thermal medium 
parameters (and a frequency dependence between these parameters and the index of refraction) makes the 
thermodynamic theory inapplicable, even in principle. The thermodynamic values of the parameters cor
respond only to rather low (strictly speaking, infinitely small) frequencies, whereas oscillations with fre
quencies up to 1011 are important in isotropic scattering. 

Fabelinskii1•2 derived a non-thermodynamic formula for the intensity of the doublet, which, because 
dispersion has been taken into account, is in much better agreement with experiment. This result, to
gether with a detailed analysis of the relevant facts, led Fabelinskii to the conslusion that it is necessary 
to develop a non-thermodynamic theory of scattering, which will take into account the frequency depend
ence of the parameters of the scattering medium, The contemporary spectral theory of heat fluctuations 
can give a complete solution to this problem, which in turn affords one of the most interesting applica
tions of the general theory. The appropriate results are the concern of the present paper. 

As is well known, the spectral composition and intensity of light scattered under various polarization 
conditions is completely determined by the mean-square spectral components of the tensor Ea{3 which 
describes the fluctuations of the dielectric constant. The spectral amplitudes Ea{3, in turn, are linear 
functions (because the fluctuations are small) of the quantities which characterize the deviations from 
complete equilibrium in the medium, i.e., deformation and temperature. Thus the problem reduces to the 
search for spectral correlation functions for the thermal fluctuations in the deformation and temperature 
medium. However, the correlation theory for thermal fluctuations in distributed systems which is now 
available5 makes it possible to solve this problem in a completely general way; this was done by the 

*As is well known, thermodynamic theory is, in general, not applicable to scattering by anisotropic 
fluctuations. 
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author in Ref. 5 for the case of an isotropic (but otherwise arbitrary) medium.* The spectral analysis 
approach is carried out in the same way in the case of a scattering medium which exhibits dispersion. 
Before proceeding to an exposition of this analysis it is convenient to characterize briefly some of its 
basic features. 

First of all, it is clear that this is a phenomenological theory, i.e., it contains no assumptions as to 
the dispersion mechanism, and, correspondingly, in no way specifies the dispersion relations, except for 
the completely general requirement that these relations must not disturb the dissipation properties of the 
medium. Any further specification of the dispersion relations may be introduced externally. 

As noted, the scattering medium is assumed to be isotropic, i.e., characterized by two (complex) elas
tic moduli, scalar thermal parameters (heat conductivity and of thermal expansion), and scalar mechani
cal and thermo-optical parameters. Thus, the viseo-elastic medium under consideration could be either a 
liquid of arbitrary viscosity, or an amorphous solid. An analogous theory for crystals would be more com
plicated only from the computational point of view; in principle it would be formulated in the same way 
using precisely this same approach. 

Since the spectral theory to be described includes arbitrary internal processes in the medium, it com
prises in a single scheme both isotropic and anisotropic fluctuations of the dielectric constant, i.e., it de
scribes the entire spectrum of the scattered light,, including the so-called wing of the Rayleigh line. By 
integrating the expressions for the spectral intensities with respect to frequency we can obtain integrated 
intensities of the total spectrum, and of individual components (e.g., the non-displaced line, the doublet, 
etc.). In fact, a series of such integrated intensities can be obtained for any reasonable specification of 
the dispersion relations. 

In the first part of the paper, Sees. 1-3, we obtain the general formulas (3.1) for the spectral intensi
ties of the scattered light, observed at right angles to the primary wave, for four combinations of the 
polarization of the primary and scattered light. Then, in Sec. 4, we calculate the integrated intensity of 
the isotropic scattering Iiso under the following assumptions: (1) the mechanical and thermo-optical 
coefficients 

Y =-Po (ae I ap)r, Z = T0 (ae I aT)p, 

and the coefficient of thermal expansion exhibit no dispersion, (2) the compression modulus K obeys a 
dispersion relation with a single relaxation time ~r', and the shear modulus Jl depends on the frequency 
in an arbitrary way. In the case of liquids, the Einstein formula follows from Eq. (4.3) for Iiso• when Z 
is neglected and K is dispersionless. For slightly viscous fluids (Sec. 5) the dispersion correction to the 
Einstein formula simplifies considerably. It depends on the ratio of 1/T' to the frequency UMB of the 
Mandel' stam-Brillouin doublet; however, it does not reduce, as might be expected, to the replacement of 
the static compressibility f3T in the Einstein formula by the compressibility 1/K ( UMB) at the doublet 
frequency. 

In the second part of the paper, we consider some further consequences of (3.1) under certain assump
tions as to the dispersion relations: the separation of Iiso into components (central line, Mandelstam
Brillouin doublet, background), the dispersion correction to the Landau-Placzek relation, the frequency 
behavior of the intensity and the degree of depolarization in the wing of the Rayleigh line, etc. 

1. SPECTRAL SOLUTION OF THE SCATTERING PROBLEM 

Let us dwell briefly on the well-known spectral solution of the problem of the scattering of a plane 
monochromatic electromagnetic wave by weak optical irregularities of the medium (cf. Ref. 7), describing 
this solution in terms of the correlation theory for random fields. 

Let the dielectric constant of the medium have the form 

s08a~ -f- s~~ (t, r), 

where the fluctuation €af3 from the mean value € 0 is small enough so that in calculating the scattered 
field produced by the incident primary wave 

Eo= Aei (cul-l:,r), (ko = w V~/ c), 

*The analogous problem in the case of a viscous fluid with no dispersion was solved earlier by Landau 
and Lifshitz. 6 
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we can confine ourselves to the first perturbation-theory approximation. We seek a solution of Maxwell's 
equations in spectral form, i.e. we represent Eaf3 in the form 

+oo 
\ i!JI sa~(t, r) = ~ sa~(O, r)e dO, 

-oo 

and the scattered field in the form 

+oo 
Ea (t, r) = ~ Ea (0, r) e i(oo+ll)t dO. 

-co 

Then, at distances R » k0 ! 2, where l is a linear dimension of the scattering volume V, the spectral 
amplitude Ea ( Q, r) is 

where q = kg- k, k is the wave vector of the scattered wave [k = ( w + Q) ../'€0/C ~ k0, since only 
S"2 « w is important] , and p is the component of the polarization perpendicular to the direction of obser
vation (multiplied by 47r): 

(1.1) 

As a measure of the intensity of the scattered light we take J w + S"2 , the ratio of the average Poynting 
vectors of the scattered and direct waves, multiplied by v-1 ( 27rEgR/k2 ) 2• An elementary calculation gives 

Jw+'il = V \ 2 ~ ~ Pa (0, r) p: (0, r') e-iqP dr dr', p = r- r'. (1.2) 
vv 

Thus, the intensity at the frequency w + S"2 is determined by the spatial autocorrelation of the spectral 
amplitude of the vector p. Because of the statistical homogeneity of the fluctuation field of p the cor
relation function depends on the vectors r and r' only through their difference p • 

Equation (1.2) is limited only by two initial assumptions: the first approximation with respect to Eaf3• 
and observation in the Fraunhofer zone. Now let (in agreement with actual experimental conditions) the 
dimensions of the volume V be very large with respect to the correlation distance of the optical inhomoge
neities of the medium. The integration over r' can then be replaced by integration over p , with the 
limits of integration extended to infinity: 

(1.3) 

If we represent Pa (Q, r) as a spatial Fourier integral 
+co 

p~ (0, r) = ~ Pa. (0, q)elqrdq 
-co 

and bear in mind that because of the spatial homogeneity of the fluctuations the correlation function of the 
Qq-amplitude has the form 

Pa. (0, q) p: (0, q') =I Pa. (0, q) 12 0 (q- q'), 

it is apparent that 

-co 

The integral appearing in (1.3) is the inverse of the Fourier integral (1.4), multiplied by ( 211')3, i.e., 

Joo+O. = (211:)3 A-2 I P~ (0, q) j2. 

(1.4) 

(1.5) 

Thus, the intensity of the light at frequency w + Q, scattered in the direction k, is to within a constant 
factor the Qq-intensity of the vector p, where q = k0 - k. 

Let us now fix the conditions of observation. We take the x-axis to be the direction of propagation of 
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the primary wave and restrict ourselves to the case of perpendicular observation (along they-axis). Then 

(1.6) 

Moreover, we consider two polarizations of the primary wave, vertical (Az =A) and horizontal (Ay =A); 
these will be denoted by the symbols t and -. We also consider two polarizations of the observed scat
tered light, along z and x. Then, from (1.1), (1.5) and (1.6) we obtain the following expressions for the 
intensities, corresponding to the four polarization combinations (in what follows we omit the index w + n 
on J): 

(1. 7) 

Thus, the problem reduces to calculation the Qq-intensities of the four components of the tensor Eaf3, 
where the vector q is fixed in accordance with (1.6). 

2. THE RELATION BETWEEN €a[3 AND THE FLUCTUATIONS 
IN DEFORMATION AND TE:MPERATURE OF THE MEDIUM 

For the mechanical and thermal quantities which give a spectral description of the fluctuations in the 
scattering medium we take the n-amplitudes of the fluctuational deformations ua{3 and the deviation of 
the temperature T fr·om its equilibrium value T0 • In this connection, it is convenient to divide Ua{3 
into a pure volume deformation uaa =1 u = - p/ Po ( p is the deviation of the density from the equilibrium 
value p0 ) and a pure shear deformation u~/3 = u01{3- uoa{3/3. Because the fluctuations are small the 
relation between Eaf3 and the quantities ua{3, u, and t'J = T/T0 is linear and the spectral-amplitude 
relations are, by hypothesis, purely algebraic: 

Eo:~ (D, r) = X(iD) u~~ (D, r) + Y(iD) u (D, r) o"~ + Z(iD) .& (Q, r) Oa~· (2.1) 

The coefficients X, Y, and Z are, in general, complex and describe the mechanical-optical and thermo
optical properties of the medium at the frequency n ·* 

In the case in which these coefficients and the mechanical and thermal parameters of the medium are 
dispersionless (and consequently are real), Eq. (2.1) is valid even for the quantities which are not resolved 
spectrally, i.e., 

Eo:~ (t, r) =Xu~~ (t, r) + Yu (t, r) 8"~ + Z& (t, r) Ba~· 

Contracting this expression, we obtain ( uaa = 0) 

s"" = 3s = 3Y u + 3Z&, 

whence it follows that in the absence of dispersion 

Y = (iJEjiJu)lt =-Po (iJE;'iJp)r, Z = (iJsjiJ.&)u = T 0 (iJEjiJT)p. 

Equation (2.1) is, of course, also valid for the Hq-amplitudes 

So:~ (D, q) =X (iD) u~~ (D, q) + y (iD) u (D, q) Oa~ + z (iD) .& (D, q) Oa~· 

It follows from (1. 7) and (2.3) that 

(2.2) 

(2.3) 

J; =(2r:)3 [Xj 2 fu~3 j 2 , Ji =(2r:)3[Xu;3 +Yu+Z&j2 , J; =(2<-)3 [X[2 ju~2 [ 2 , J; =(27t)3 [X[2 [u;2 [2 • (2.4) 

All the intensities, except J i, are due to anisotropic fluctuations; only J J contains the isotropic part, 

which is proportional to IYu + Zt'J 12 • 

3. SPECTRAL INTENSITIES OF THE SCATTERED LIGHT 

In accordance with Eq. (2.4), the determination of the spectral intensities of the scattered light reduces 
to a search for the Qq-intensities for deformation and temperature fluctuations. This problem has been 

*Since the spectral amplitudes of the fluctuations of any internal parameters can be expressed 
linearly in terms of ua{3(Q, r) and t'J(Q, r) (in the absence of spatial dispersion, cf. Ref. 5), there 
are no grounds in our spectral theory for introducing in (2.1) an isotropic term of the form E'oa{3 which 
does not reduce to fluctuations of density and temperature, as was done in Ref. 8. 
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solved in Ref. 5 and we now make use of the results obtained there. 
In Sees. 4 and 5 of the work cited formulas are given for the following nq-intensities (in the notation 

of Ref. 5 these are called wk-intensities): 

In these general formulas, in accordance with Eq. (1.6), we set q1 = <l2 = q/...[2, and Cia = 0 whence the 
expressions which appear in (2.4) are obtained. As a result we find 

_ e I X 12 { 1 ( d1f; q2) 1 . } J X = S1tin [1:" 1 + -----zs:- - Comp , COD], , 
_ , e 1 x 12 { 1 ( p~n· ) . \ 

Jz =Jx = 161tiO [1:"- 1 +I A4 l2 -compl. cOD]}' 

Jz+ = z!n c3~~2 ( 1 + d~:·) + ( XY"C" + X"YC f.) CI~t- (xv· K~ + X"Y l-) ~~ +(XZ" + x·z f.) C!q2 (3.1) 

+I~ 12 (dJ/-a- CC*i(q2 )- [ YZ"Ci(q2- y•z( C* A1 - C ;. A3)] ±+I ~~2 A1 -compl. conj. }· 

For brevity we use the same notation as in Ref. 5, in particular 

d = D +xT0q2jiQ, d1 = d- C2K =D1+ xT0q2jiQ, D1 = D- C2K, !1 = dA1- C2KAa = d1Aa -dKq2, 

A r.2 (K- + 4 -) 2 A r.2 4 - 2 A "2 - 2 
1 = Po•• - 3 P. q • 3 = Po•• - 3 p.q • 4 = Po>< - p.q · 

Thus, in the final analysis, all quantities are expressed in terms of K, Ji, K, C and D which have the 
following significance: K and 'ji are the complex elastic moduli, i.e., 

K. = K (Q2) + iQC (Q2); ~ = p. (Q2) + iil'TI (Q2), 

where K is the compression modulus, f.L is the shear modulus, ~ and 11 are respectively the volume 
and shear viscosity, K is the complex heat conductivity, and C and D are complex coefficients in the 
equations which relate the spectral amplitudes of the fluctuations to the specific (per unit mass) entropy 
S, the voiume deformation u and the temperature {} = T/T0 : 

p0ToS (Q, r) = Ci( u (Q, r) + D1& (Q, r). 

In the absence of dispersion K, ji, K, C, D and D1 are real constants where 

(3.2) 

where f3T is the isothermal compressibility, a is the coefficient of heat expansion and cp and cv are 
respectively the heat capacities at constant pressure and constant volume. 

Equations (3.1) have been written for a frequency which satisfies the condition 1i n « e = kT 0 • When 
this condition does not hold e must be replaced by the quantum expression for the mean energy of an 
oscillator. 

Without carrying out a more detailed analysis of Eq. (3.1) we can make several general remarks as to 
the form of the spectra which are described. 

As has been noted in Ref. 5 the dispersion equation can be broken up into two equations, namely D.= 0 
and A4 = 0 where the first refers to the compression wave and the thermal wave while the second refers 
to the shear wave. Correspondingly, the terms in Eq. (3.1) which contain D. in the denominator give rise 
to a triplet in the spectrum-a central maximum and a Mandel' shtam-Brillouin doublet while those con
taining A4 in the denominator (that term appears only in Jz = Jk) give rise to a shear doublet. 

The presence of dispersion in the medium leads, first of all, to a finite width in the maxima of both 
doublets. In the absence of loss these maxima become discrete lines ( o -peaks); this also occurs at the 
central maximum if the heat conductivity approaches zero. Secondly, dispersion leads to the appearance 
of a wide continuous background, the distribution of which depends on the dispersion relation. Terms 
which contain "ji in the denominator and which arise solely as a result of optical anisotropy (for X = 0 
these all disappear) lead to the formation of the wing of the Rayleigh line which, in the case of a liquid, 
may extend far beyond the Mandel' shtam-Brillouin doublet. In a similar way terms with K in the denom
inator make a contribution to the continuous background. These terms will be considered in greater detail 
later on. 

It is reasonable to assume that the ratio of the maxima to the background level itself depends, in an 
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important way, on the values of the parameters. Thus, for example, the triplet in Jx, which should be 
present because of the second term in the denominator which contains !:l., is practically unobservable 
in a slightly viscous fluid because f.L is very small at the frequencies in question. If the value of the 
static shear modulus approaches zero (transition to the liquid case) the maxima of the shear doublet, 
described by the second term in JZ: = J~, contraet about the central line and merge into the background, 
and so on. 

Equations (3.1) represent the most information that can be reasonably expected from a purely phenom
enological theory. These general expressions allow us to draw concrete conclusions which are necessarily 
based on certain assumptions as to the dispersion relations between the parameters X, Y, Z and K, ji, K, 

C, D. There are certain theoretical restrictions on tEe enumerated parameters. The dispersion of the 
mechanical and thermal parameters of the medium, K, ji, C and D may be subject to rather general 
considerations-something like those which were introduced in the formulation of the relaxation theory 
for dispersion and absorption of sound in liquids in the work of Mandel' shtam and Leontovich.9• 10 The 
problem is somewhat more difficult for the heat conductivity K • As for the parameters X, Y, Z there 
seems to be, as yet, no approach to a theory for setting up a frequency dependence for these parameters. 
However, Eqs. (3.1) make it possible to compare various assumptions with the experimental data on the 
scattering of light and can be useful in this respect. 

We now turn to the results which follow from Eq. (3.1) when some particular assumptions as to the 
dispersion relations between the above-mentioned parameters are introduced. 

4. INTEGRATED INTENSITY OF THE ISOTROPIC COMPONENT 
OF THE SCATTERED LIGHT 

The intensity of the isotropic component, given by those terms in Eqs. (3.1) which do not contain X, is 

J iiso= 2!in {-} [1 Y 12 (~k~3 - CC'Kq2)- Y Z'CKq2 + y•z ( C' A1- C ;.A3 ) +I Z !2 A1 J - compl. conj.} o (4.1) 

The indices which indicate the vertical polarization of the primary and observed waves will be discarded 
in the following. 

To compute the integrated intensity 

+co 

liso= ~ JisJlD. (4.2) 
-co 

we make use of (7.4) add (7.5) of Ref. 5, having made the following assumptions for this purpose: 
(a) Y, Z and C are independent of n, that is, they have real thermodynamic values (2.2) and (3.2). 
(b) The compression modulus K obeys a simply dispersion relation characterized by a single relax

ation time r 

Then, 

- Kcoz+Ko/'r' z +a ( 0 Ko ) 
K = z + 1/'r' = Koo z +1/T' z = zQ., a= Koo't'' 0 

Substituting this relation in (4.2) and using (7 .5)> of Ref. 5 in the first three terms (and their complex 
conjugates) and (7 .4) in the last term (and its complex conjugate) we obtain 

(4.3) 

The subscript 0 and oo here denote values of the parameters which obtain at z - 0 and z - oo ; these 
can be shown to be real from general considerations. The subscript a denotes values for z = a = 
Ko/K00r (also real). 

For a liquid ( f.L 0 = 0), neglecting the dependem~e of € on temperature ( Z = 0), in the absence of dis
persion in the compression modulus ( K 00 = Ko = 1/ J3 T) the Einstein thermodynamic formula 11 is ob
tained from Eq. (4.3) 
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/iso= 8Y 2/Ko = 8pr [p0 (ozjop)rP· 

Equation (4.3) describes both a highly viscous liquid and a solid body, depending on the degree to which 
the assumptions made above apply. In any case, in Eq. (4.3) we have not assumed that the dispersion dif
ferential K 00 - K 0 is small; for the shear modulus II there is, in general, no limitation other than the 
general requirement that the limiting values J.l.o and J.l.oo be finite. As an example we now consider the 
case of a slightly viscous liquid.* 

Let us consider first the assumption that the coefficient Y is constant. The measurements of Fabelin
skii and Motulevich have shown12 in a number of liquids that even at supersonic frequencies ( 107) the 
square of the modulus of Y ( iQ) is about 10-12 percent lower than at 50 cps; this result is in good 
agreement with the values obtained from the intensity of the scattered light. It is difficult to interpret this 
result even when we compare the frequency at which the liquid parameters change Q, not with the fre
quency of light w, but with the reciprocal values of the time required for establishing the index of refrac
tion. This time should be determined, at least in terms of order of magnitude, by the width of the absorp
tion band and not by its location in the spectrum. Thus, for example, the index of refraction of a gas through 
which passes a wave front with an associated frequency of approximately 1015 is established not in 10-15 

sec but approximately 10-9 sec, corresponding to the width of the spectral line of the gas (~A....., 0.01A). 
If the line (or band) has a width of 1- 10 A the corresponding time is 10-11 -10-12 sec. Thus one expects 
a certain dispersion effect in Y ( m) for frequencies of the order of 1010 but under the condition that the 
light frequency is close to that of the absorption line or band. This is precisely what is not found in scat
tering observations and thus the index of refraction should follow the density oscillations almost quasi
statically if the medium parameters very in a sinusoidal manner. 

Thus, it is difficult to explain dispersion in Y ( iQ) even at frequencies of the order of 1010, let alone 
107• In view of these considerations the assumption that Y is constant is a reasonable one; however, the 
contradictory experimental results force us to leave this assumption open to question. 

5. CASE OF SLIGHTLY VISCOUS LIQUID 

Turning now to the case of a liquid (JJ.o = 0) with rather small dispersion we need keep in (4.3) only 
terms of first order in the dispersion corrections, that is, in the coefficient for Koo - K0 we take values 
of all parameters for z - 0. t Furthermore, since the value of Z is itself small, in general it is pos
sible to neglect the dispersion corrections in terms which contain Z. Then Eq. (4.3) assumes the form 

(5.1) 

where 

(5.2) 

K = KoTofD0 = K0/p 0cp is the heat conductivity of the liquid, 'Y = D0/D10 = cp/cv and n~m = yK0q2/p0 
( QMB is the frequency of the Mandel' shtam-Brillouin doublet). It is apparent that the parameter s is a 
measure of the degree to which the compression modulus relaxes at the doublet frequency. If the relaxa
tion region for K is already reached when Q = QMB , ( QMB T' » 1), s is small and the corresponding 

Liquid 

Carbon 
tetrachloride 0.67 1.44 

Benzol 2.44 1.44 
Carbon bisulfide 21.8 1.56 

0.0021 4.31 
0.0092 7.89 
0.114 5.59 

0.52 
0.021 
0.00038 

dispersion correction in (5.1) is unimportant. 
In the three liquids for which Fabelinskii and his 

colleagues13•14 either measured or estimated the values 
of T', if it is assumed that q2 = 4.15 x 1010 (light wave 
length 4368 A) we have: 

Thus the dispersion correction given by the second 

*In solid bodies information concerning the dispersion of elastic moduli, or even the order of magni
tude of the relaxation time is not available, to the best of the author's knowledge. 

tIt is obvious that the quasi -static values coincide with the thermodynamic values ( dispersionless); 
hence, for these, as for the parameters which were earlier assumed to be dispersionless, we will fre
quently use the notation of (3.2). 
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term in (5.1) is important in carbon tetrachloride but is extremely small in the other two liquids. 
In those cases in which s « 1 Eq. (5.1) reduces to the following: 

(5.3) 

If K00 could be measured independently, using Eq .. (5.3) it would be possible to verify the assumption that 
the coefficient Y is dispersionless. But dispersion measurements in the propagation of compression 
waves do not give direct information as to the magnitude of K00 • 

Actually, it follows from Eq. (6.5) of Ref. 5 that the square of the complex velocity of propagation of 
longitudinal waves v is given as follows: 

2 _ P+R 
V - -2p0D 1 ' 

(5.4) 

The parameters D, D1 , and K reach their limiting values D00 , D100 and K00 at frequencies Q » 1/r, 
that is, when Q ~ 1011 • But in the case of a slightly viscous fluid these frequencies are very small as 
compared with 1/T ( T is the relaxation time for the shear modulus), since r/T ~ 103• Furthermore, 
at the frequencies indicated the quantity 0Kp 0T 0 is very small as compared with DoKo since these quan
tities can become comparable (i.e., comparable thermal and longitudinal wave length) only when 

Q = DoKo/xpoTo = 1 /Po~rx~ 1013 • 

Thus, in Eq. (5.4) we can neglect 4ji/3 and 0Kp 0T 0 not only when Q- 0 but also for those frequencies 
Q » 1/r at which the velocity has already reached value v00 • Then 

v2 = Dl( j D1p0 , (5.5) 

Whence it follows that from the dispersion differential in the velocity v we can find the limiting value 
( UT' » 1) of the "adiabatic" modulus Kad = DK/:01 

( ~s = ~), (5.6) 

whereas in (5.3) we have the limiting value K00 of the "isothermal" modulus K. 
We wish to take this opportunity to thank M. A. Leontovich and I. L. Fabelinskii for their interest in 

this work and for very valuable discussion of the results. 
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