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Landau's theory of a Fermi liquid1 is extended to the case of an electron liquid. 

1. INTRODUCTION 

THE electron theory of metals successfully uses for the description of many metallic properties the 
representation of the electrons as independent particles, and thus considers the electrons of the metal as 
a gas. True, since the electrons are located in the field of the metal lattice, their properties are consid­
erably different from those of free electrons. This difference, in particular, is characterized by the dis­
persion law, i.e., by the dependence of the electron energy on their quasi-momentum. The difference in 
the energy of the electrons in the metal from the energy of free electrons is also due to the interaction 
between particles. This interaction is not at all small. Actually, the mean energy of Coulomb interaction 
of metal electrons is on the order of their mean kinetic energy. Therefore, it is natural to expect a sub­
stantial correlation in the motion of the electrons. 

Actually, in the different attempts to calculate electron correlation ( cf. Ref. 2) there was discovered 
a substantial effect of electron correlation on many metal properties. However, all these attempts were 
based on the use of a microscopic picture of the metals, and, in fact, were aimed at solving the many­
body problem. The absence of a small parameter from these theories, due in the first place on the equal 
order of magnitude of the kinetic and potential energies of the electron, does not make these theories very 
valuable. Therefore, it is of considerable interest to construct a phenomenological theory sufficiently 
complete to take into account electron correlation, and not restricted to the narrow framework of some 
assumption, often far from justified, which one has to make in attempting to construct a microscopic 
theory of many particles. Such a phenomenological theory is the theory of a Fermi liquid, formulated by 
Landau for a quantum liquid such as He3• 

The object of the present work is to extend the Landau theory to include a degenerate electron liquid. 
Let us note that in the kinetic theory of metal electrons the correlation is not calculated in practice. 

The Boltzmann kinetic equation is usually used instead. Moreover, partial calculation of electron corre­
lations originating at small distances and leading to collisions is carried out by means of the electron­
electron collision integral. Actually, these collisions play a small role,3 and therefore make a slight con­
tribution to the correlation. On the other hand, calculation of the correlation due to the identity of the 
electron shows that an appreciable change results in the kinetic equations. 4 What is important is that the 
influence of correlation does not reduce merely to collisions. It is therefore necessary to formulate a 
kinetic equation for electrons correctly taking into account the correlation of the particles. It will be 
shown below that the Landau theory allows one to carry out a phenomenological calculation of electron 
correlation. As will become evident from the following arguments, the theory of a Fermi liquid, formu­
lated in Ref. 1 presupposes a small radius of effective force; it becomes therefore necessary to examine 
the variations resulting froll). Coulomb forces acting between electrons at an infinite radius. 

In Sees. 2 and 3 it is shown that distant forces are correctly described by the self-consistent equa­
tions of the electromagnetic field. 

2. LANDAU THEORY OF FERMI LIQUID -t\ND THE HARTREE-FOCK APPROXIMATION 

In order to understand how to extend the Landau theory to the case of electron interaction we first 
compare this theory with an approximate examination of a Fermi liquid based on the Hartree-Fock ap­
proximation. For simplicity, this comparison is made for the kinetic equations in the linear approxima-

387 



388 V. P. SILIN 

tion, i.e., for slight deviations from the homogeneous and isotropic equilibrium state. In this case the 
kinetic equations, obtained in Hartree-Fock approximation for a system of half-spin particles, has the 
following form: 4 

88~ + { ~ - ; ~dp'v (j !' ~ p' J) ~~} ~- + ~; :r H-· ~ dp'v (/P ~ p'j) cp (r, p) - ~ dp'dr'cp (r', p') U (r-r') I )} = 0, (1) 

-t + ({ ~ - +~dp'v W ~ p' /)~i;} :r) a+ (8£; -a~){-~~ dp'v(j P~ p' /)a (r, p') = 0. (2) 

Here fo is the distribution function of the equilibrium state, cp is the non-equilibrium addition to the dis­
tribution function, a is the spin distribution function (it is assumed that in the equilibrium state a0 = 0), 
U ( r) is the interaction energy of two Fermi partic:les, and v ( k) = f dr U ( r) exp ( ikr). The spin distri­
bution function is defined here by the relation 

a (r, p) == Sp., an (r, p), (3) 

where a- is the spin operator and n the density matrix. 
Equation (2) is of the same form as the corresponding equation of the Landau theory, but Eq. (1) is 

substantially different since it contains a term with the particle-interaction energy U, which makes 
Eq. (1) integral in coordinate space. Such a difference can be removed by assuming the radius of the 
force effective between particles of the Fermi liquid to be small in comparison with the characteristic 
dimensions of the spatial inhomogeneities. In the case of a Fermi liquid such as He3, this requirement, 
imposed on the radius of action of the force, is known to be satisfied. Then 

~dp'dr'cp(r', p')U(Ir-r'J)=~dp'cp(r, p')~dr'U(r')=v(O)~dp'cp(r, p'). (4) 

Using relation (4) we can transform Eq. (1) to the following form 

where 
r (p, p') = v <o> --'I(/ p ~ p' J) < 1 + aa'); 2. (6) 

A 

If the form of the function f (p, p') is not specified, we cap say that Eq. (5) agrees with the corres-
ponding equation of the Landau theory. In Ref. 1 the function f (p, p') is defined as the forward scattering 
amplitude of two quasi-particles of a Fermi liquid taken with a negative sign. In the Hartree-Fock approx­
imation, according to Eq. (6), this effectively turns out to be so, but only for the scattering amplitude cal­
culated in Born approximation. 

From the above it is clear that the Landau theory of a Fermi liquid does not take into account the ef­
fects possible in the case of a force with effective radius comparable with the characteristic dimensions 
of an inhomogeneous liquid. Therefore, that theory cannot be directly applied to the case of Coulomb in­
teraction, which is significant for electrons. 

3. ENERGY AS A FUNCTIONAL OF THE DISTRIBUTION FUNCTION IN THE CASE 
OF COULOMB INTERACTION OF PARTICLES 

The characteristic feature of the Landau theory of a Fermi liquid, which distinguishes it from gas 
theory, is that, owing to considerable self-consistent interaction of the parti~les the energy of an indivi­
dual particles depends on the state of the surrounding particles. This, naturally, makes the energy of a 
system of particles unequal to the sum of the energies of the individual particles, and makes it some func­
tion of the distribution function. 

Actually, in the Landau theory the variation of the energy density of a system of particles for infinitely 
small variation of the distribution function has the form 

'OE (r) =Spa,~ s (p, r) on (p, r) dp. (7) 

This formula, in fact, defines the energy (Hamiltonian function) of a quasi-particle, which differs from a 
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free particle owing to the self-consistent interaction with surrounding particles. 
Further, an essential role is played in the theory of a Fermi liquid by the variation in € (p, r) due to 

the variation in n. In Ref. 1 it is assumed that 

o6 (p, r) = Sp.,, ~ f (p, p') on (p', r) dp'. (8) 

The second variational derivative of the energy density f ( p, p') determines many properties of the liquid, 
and in particular, it modifies substantially the kinetic equation. 

In the preceding section it was shown that it is not possible to use the Landau theory directly in the 
case of a force having a large effective radius. This is connected with the use of Eq. (8) in this theory. 
One can understand the limited scope of this equation, for example, by use of Hartree-Fock approximation. 
In the general case one can say that 

o6 (p, r) = Sp.,, ~ F (p, p'; r, r') on (p', r') dp'dr'. (9) 

In other words, the second variational derivative of the energy density of a liquid with respect to the dis­
tribution function depends not only on p and p' and spins, but is also a function of the coordinates r and 
r'. 

In particular, if we use the Hartree self-consistent approximation for particles interacting in a cen­
tral-force field with potential energy U ( lr - r' I), then the function F assumes the following form: 

Fx(p, p'; r, r')=V(Ir-r'l). (10) 

In the Hartree approximation we disregard correlation completely since the distribution function of the 
system is taken in the form of the products of the distribution functions of the individual particles. The 
difference ( F - F x) is therefore entirely due to the effect of the correlation of the particles. In the gen­
eral case little can be said about this quantity. Note, however, that the case of practical interest, as shown 
below, is the one in which the radius of correlation of the particles is much less than the distance over 
which the distribution function varies significantly. In this case it is possible to take 

F (p, p'; r, r')- Fx ~a (r- r') f~ (p, p'). (11) 

Correspondingly, Eq. (9) takes the following form 

os (p, r) = Sp.,. ~ U (I r - r' I) an (p', r') dp' dr' + Sp.,· ~ ft (p, p') on (p', r) dp'. (12) 

If the forces have a small effective radius, then Eq. (2) almost agrees with Eq. (8) taken in the Landau 
theory. Since in the case of He3 the effective radius of forces as well as the radius of correlation of par­
ticles are both of the order of the interatomic distances, it is clear from the above that the use of Eq. (8) 
for liquid He3 is entirely valid. 

We go now to the concrete case of electrons. It is clear that the term in Eq. ( 12) containing the energy 
U ( r), equal in our case to e2/r, leads, in general, to substantial difference from Eq. (8) which is the 
usual one for the Landau theory. However, to use Eq. (12) it is first necessary to justify approximation 
( 11). Therefore, we shall now examine the question of electron correlation. 

The correlation of degenerate electrons is due, in particular, to the sameness of the particles. This 
correlation is taken into account, for example, in the Hartree-Fock approximation. It is therefore possible 
to say at once that the distance in which the correlation is significant is of the order of the interelectron 
distance. Further, for electrons, for example of a metal, an important correlation is that due to their 
interaction (force correlation). This correlation at large distances is similar to the Debye correlation of 
particles, for example in electrolytes, and at small distances it is connected with the strong repulsion 
between electrons. 

An essential feature of this correlation, for electron densities prevailing in a real metal, is that the 
characteristic distance in which the correlation is significant proves to be not much more than the inter­
atomic distance.2 It is therefore possible to say that, depending on the anisotropy, approximation (11) and 
Eq.' (12) can be used for metal electrons. In this last relation the effect of distant forces is taken into 
account in the term containing the interaction energy of a pair of electrons U (r) = e2/r. Calculation of 
the near correlation gives the function f1• The explicit form of this function is unfortunately unknown. 
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Apparently, it is only possible to say that the relative contribution due to the function f1 is determined by 
the parameter e2/nv0 where v0 is the velocity of the electrons on the Fermi surface. 

Let us note a particular feature of Eq. (12) in the case U ( r) = e2 /r. The first term on the right side 
of Eq. (12), if we consider it literally, leads in this case to a divergent integral for uniform distributions. 
This is caused by the fact that in the analysis of the system of electrons it is necessary to introduce the 
background of positive charges which compensate for the charge of the electrons and which correspond to 
the electronic charge of the ions. Therefore, in the first term on the right side of Eq. (12) we must take 
on to mean the deviation of the distribution function from its spatially-homogeneous value. Hence, it fol­
lows that for a homogeneous spatial distribution of electrons Eq. (12) actually does not differ from the 
corresponding equation of the Landau theory, and, in particular, our function f1 coincides with the function 
f of the Landau theory. This means that Landau's theory of a Fermi liquid as applied to a spatially homo­
geneous state is suitable also in the case of Coulomb interaction between particles. The difference due 
to Eq. (12) arises only in the case of spatially-inhomogeneous distribution. 

4. KINETIC EQUATION FOR THE ELECTRONS OF A DEGENERATE ELECTRON LIQUID 

Usually the Boltzmann kinetic equation is used for the electrons in a metal. In this case the Lorentz 
force, which occurs in that equation, is determined by the self-consistent electromagnetic field.* In other 
words, the electromagnetic field equations have the following forms: 

1 oH 
curiE+ c 7ft= 0, 

1 oE . (' A 

div H = 0, curlH- cat= 47te Spa~ vndp. (13) 

In these equations Spuft represents exactly that distribution function for which the Boltzmann equation is 
usually written. 

Such a self-consistent approach neglecting the eollision integral exactly corresponds to the Hartree 
approximation. In the preceding section where we examined the Coulomb interaction of electrons we 
arrived at the result that the Hartree approximation accurately described the long-range part of the inter­
action of particles. Therefore, it is clear that the longitudinal part of the Lorentz force should be deter­
mined by the self-consistent electromagnetic field .. Obviously, the long-range part of the electron inter­
action due to the transverse field should be reckoned in an analagous manner. Consequently, the long­
range part of the electron interaction is accurately taken into account by the usual self-consistent kinetic 
equation. 

The difference from usual kinetic equation arises from the neighboring correlation of the particles de­
scribed by the second term of the right side of Eq. (12). However, since this term is entirely similar to 
Eq. (8) usually used in the Landau theory, the difference between the kinetic energy of the electrons of a 
degenerate electron liquid and the Boltzmann kinetic equation is, in fact, contained in the kinetic equation 
of the Landau theory. Therefore, the sought-for kinetic equation can be obtained from the results of Ref. 1. 
Then, disregarding spin-orbit interaction, it is possible to write the following kinetic equation for the elec­
trons of a degenerate Fermi liquid: 

on + ~ ( ?el an+ on ~) - __!:_ (~ an + an oel ) 
ot 2 ' op or or ap 2 ar op ap or 

on e i[ ~ an. an 1l ~ A A A A . A + eE op + 2c 1 vx~ap-+ ~:lp {vxH]f + 21 (o-Hn -- no-H) =I (n). 
(14) 

Here n ( p, r) is the distribution function, which is a function of the coordinates and of the momenta and 
which is a matrix in spin space, u is the operator of electron spin, f3 is the magnetic moment of the elec­
tron, I(n) is the collision integral, and o€ 1 differs from expression (12) by the absence of self-consistent 
term, 

oE1 = Sp.,, V (p, p') on (p', r) dp' - { ~;n: (15) 

In Eq. (14) and also Eq. (13) the value of v, the velocity of the particles, in fact remains undetermined. 
If we neglect the effect of the lattice and consider an isotropic electron liquid, then it is possible, 

*Such an approach, applied to electron plasma, is developed in the work of Vlasov;5 for metal electrons 
this approach is extensively used in the theory of the anomalous skin effect.6 
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according to Landau, to use the Gallilean relativity principle. Then 
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-- ae P + s I t' ( ') an d , v = a-p- = m Pa' ~ p, P iJp' P , (16) 

where m is the mass of the free electron. However, in a real metal m may differ from the mass of the 
free electron. Furthermore, this quantity, as well as the function f ( p, p'), can depend in principle on the 
direction. In addition, the region of large electromagnetic fields, t(p, p') may also depend on the elec­
tromagnetic field. 

In conclusion I wish to thank V. L. Ginzburg for his interest in this work. 
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A formalism of invariant matrix polynomials L~:· f. J is ?eveloped for systems of particles 
of arbitrary spin. A general method for calculatui.g' Lf, R_~ J is found, and the polynomials 
for total spin 0, % and 1 are written out explicitly. Equations (3.2)- (3.7) make the expan-

' sion of any invariant operator in polynomials L f, •l J a simple matter. It is shown that the 
coefficients in such an expansion of the scattering matrix are directly related to the phase­
shifts. Formulae are derived for calculating the phase-shifts to any order of perturbation 
theory. In many specific examples this method simplifies the calculation of phase-shifts. 

1. INTRODUCTION 

T 0 make comparisons of various theories with experiment, one must deal either with cross-sections 
or with phase-shifts. Whenever possible the phase-shifts are to be preferred, since they express the 
properties of the scattering with maximum conciseness. For example, the absolute sign of a phase is 
highly significant, as it indicates a qualitative difference (attractive or repulsive interaction) between 
two processes which may have equal cross-sections. 

There is no existing theory which describes satisfactorily the strong interactions. But there are sev­
eral theories 1- 3 which give a reasonable qualitative picture of some particular processes. To compare 
these theories with one another, it is also convenient to study the behavior of the phase-shifts which they 
predict. 


